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Abstract
When industrial assets malfunction, the financial consequences can be immense as operations poten-
tially need to temporarily shut down or slow down. With assets becoming more complex the need for
digital troubleshooting systems become more apparent as humans are limited by their weak ability to
comprehend and analyse a large amount of complex data. Such a system needs to detect when a failure
has occurred, diagnose the most likely failure, guide a technician or operator in resolving the failure,
and lastly test if the asset is operating as normal after the repair. This thesis focuses on the diagnosis of
the assets based on the multivariate time series data coming from the asset’s sensors. An extensive set
of experiments were carried out on both open-source datasets and a real-world dataset from five wind
turbines. An automatic prepossessing and hyperparameter tuning process of multiple state-of-the-art
time series classification algorithms, including InceptionTime and MiniROCKET, are presented. The
method is proven to be effective on the open-source dataset where the achieved results match those
from published reviews of the same algorithms using the same datasets. The method was used on the
real-world data where it was shown that it was possible for the classification algorithms to identify, to
a wide extent, in which component of the wind turbine the failure had occurred.

Failures on these industrial assets can be rare. The classification models will therefore have too few
examples to learn the general characteristics of a failure. Therefore, the use of generative adversarial
networks (GANs) to increase the performance of the classification models was investigated. For this, a
version of the newly published generative model, uTSGAN, was developed and compared to the original.
The experiment showed that it was possible to train a GAN that was able to generate realistic samples
that could improve the performance of the classification model when combining it with the true data.
More work however needs to be done in the academic community to make it feasible to use GANs in
an operational setting.
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CHAPTER1
Introduction

When industrial assets are malfunctioning, the financial consequences can be immense as operations
potentially need to temporarily shut down or slow down [Ise97]. The existence of robust and reliable
maintenance- and troubleshooting systems are therefore essential for companies that rely on a steady
and consistent operation.

Humans are highly limited by their weak ability to analyse multiple features at the same time along
with remembering a large amount of information for longer periods. Troubleshooting complex industrial
assets can therefore be problematic as interconnected dependencies between an asset’s components can
be difficult to fully comprehend. Previous fixes for a diagnosis can be forgotten and symptoms associated
with a given diagnosis can be ignored if the technician has not experienced it before.

When a symptom is detected it is not guaranteed that an efficient plan of action is immediately
obvious for a technician or operator. A series of questions by the technician or operator must be
answered to classify the diagnosis for the experienced symptoms. This process can be very cumbersome,
especially with offshore assets. Imagine if an offshore wind turbine is showing some symptoms (by for
example producing less energy than expected), then it would be valuable for the operators to have
an idea of what the potential diagnosis could be before sending a technician to the asset. This would
reduce the number of times sending a technician to the platform and thereby reducing the amount of
money needed for transportation and general downtime. Troubleshooting is today depending on skilled
technicians who through education and working experience with an asset can understand the potential
diagnoses associated with the displayed symptoms [Gho+19]. For novel technicians, the process is
often associated with a ”trial-and-error” approach, where no initial knowledge or structure about the
system is present except for his education. The transfer of knowledge from the experienced technician
to the novel technician can be a slow process that may take years before the novel technician can
achieve independence. Knowledge, therefore, needs to be moved from the brains of the technicians to
a system. This can reduce the duration of the onboarding and training of new technicians. By logging
the symptoms of an asset, the actual diagnosis associated with the symptoms, and the final solution
to the diagnosis, it would be possible to create such a digital system that could become an efficient
assistant to both new and experienced technicians and operators. Advances in machine learning and
an ever-increasing amount of data collected by companies and researchers are setting the scene for new
possibilities for creating more intelligent systems.

1.1 Thesis Scope
To understand the scope of this project some background context is required. Guided troubleshooting
can roughly be divided up into four parts: A detection part, a diagnostic part, a guided repair part, and
a test part. These elements will be explained in further detail in section 2.1. It is not possible to touch
upon every element of the problem during the duration of a thesis. The most challenging part is the
diagnostic as many failure types can be closely related with subtle differences in displayed symptoms.
This element will therefore be the main focus of this thesis. These subtle symptoms display themselves
in the asset’s sensor data along with unstructured heuristic data like its service reports and general
repair history. Both of these types of data are valuable to identify which fault the asset is experiencing.
A model is therefore needed that can handle and analyze both the unstructured heuristic data and the
structured sensor data.
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Figure 1.1: Model of the different elements of diagnostic: The data relevant for an asset are divided
into two parts: Sensor data and operational data. A model will classify the failure of an
asset from a given period surrounding an event of abnormal behaviour. The probabilities
from this classification algorithm along with the relevant operational data are used as an
input for a strategy decision model. This will then, based on the input, suggest the most
optimal steps to help the operator or technician to identify the actual failure of the asset.

Models for both of these types of data should be unified in a strategy decision model that outputs
a suggestion for steps that allows an operator or technician to identify the root cause of the problem.
The models for the two types of data should be triggered when some event is registered. This could be
a fault detection model indicating abnormal behaviour or an operator/technician observing something
unusual. The unification of the sensor data and operational data will be the subject of future work and
will be discussed in section 7. This unification of the two types of data and the strategy decision model
is illustrated in figure 1.1. This thesis will focus on the time series sensor data and to what extent
it is possible to classify multivariate time series data into known faults. This will be done by setting
up a series of experiments where different state-of-the-art time series classification models will be used
to predict a fault. The datasets that are going to be used are both open-source, where benchmark
results have been published by researchers around the world, but also relevant data from operational
wind turbines where failure types have been registered through a two year period. The reason to put
so much effort into creating a good classification algorithm is to, in the end, make the strategy decision
model simpler and more efficient. If the output from the time series classification model is more reliable
the strategy decision model can weigh these inputs higher and thereby put less emphasis on the less
structured and harder to interpret operational data. Therefore, the classification model is a valuable
step in the process of creating the strategy decision model.

This thesis is carried out with the fact in mind that the models will be deployed in an operational
setting. A considerable effort has therefore been put into implementing an infrastructure that allows for
dynamic data prepossessing and model initialization independent of the dataset in question. This is done
by implementing a pipeline with a grid search incorporated that allows for automatic hyperparameter
tuning and easy continued training when more data becomes available. The thesis can therefore be
categorized as both an implementation and a research project. The proposed methods are new in an
operational setting and only a few similar methods have been proposed in the literature. The presented
experiments are therefore conducted to test if the proposed methods have any validity to solve the
problems associated with creating a model that can classify a failure on an asset based on its sensor
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data.
Even though massive amounts of data are collected about industrial assets the logging of specific

failures is limited. This means that the data-hungry models that are used to classify the failure types
possibly do not have the necessary data foundation to make correct predictions on unseen data. Research
into companies working in the guided troubleshooting space revealed a bottleneck in implementation
time due to slow mapping of symptoms to failures, traditionally done manually by domain experts. All
these issues will be further explained in section 2.5. Methods for handling these issues and reduce their
influence on a successful model will be suggested. Here state-of-the-art generative adversarial models
(GANs) are proposed to enrich the original dataset with synthetically generated data that draws samples
from the underlying data distribution. The thesis will contribute to the general development of GANs
for time series generation by building upon the newest generative models presented in the literature.

1.2 Research Question
Based on the brief introduction to the subject and the associated problems in the previous section, the
following research question has been formulated. The research question aims to contain the following
elements for a final system:

1. Diagnose most likely fault on an asset based on its sensor data.

2. Can be implemented with a smaller data foundation.

3. Reduces the implementation time for the companies.

• To what extent is it possible to create a model for fault diagnostics of industrial assets by classifying
time series data from its sensors?

• Could a data set be enriched with synthetic data generated from the original dataset to make it
more balanced and larger?

• How should a system be implemented to allow for dynamic prepossessing, training, and continuous
improvement?

1.3 Thesis Structure
The thesis is structured in the following way:

• The first chapter gives an overall introduction to the general topic along with the problem and
scoping relevant for the work conducted during the thesis.

• The second chapter consists of a deeper dive into the background of the topic with a description
of related work in the industry and literature.

• The third chapter presents the theory used throughout the thesis.

• The fourth chapter presents the high-level design idea behind the implemented system, how it is
used in the context of this thesis, but also in the context of an operational setting. Next, the
implementation of the infrastructure is presented along with the different proposed algorithms
and methods.

• The fifth chapter presents the experimental method and setup used to test the stated research
questions.

• The sixth chapter goes through all the results from the experiments. The results will be analysed
and discussed along with the limitations of the proposed methods.
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• The final seventh chapter will conclude on the stated research question presented in chapter one.

The ideas behind developing intelligent troubleshooting systems have now been explained. These
mainly focus on the human limitations that prevent a large amount of data to be analysed. Therefore
systems need to be developed that can collect, store, and analyse data across time and assets to be
used when a fault is detected. The knowledge about the assets should be transferred from the skilled
technician to a digital system so for instance AI models can assist technicians to achieve independence
faster. The scope of this thesis will be on the classification of the time series data generated by the
sensors on industrial assets. This will in future work be used in collaboration with heuristic operational
data to create a unified strategy decision model meant to guide operators or technicians in diagnosing the
asset when a fault is detected. In the following section, a more detailed presentation of the background
and project will be presented. Furthermore will related work from the literature and industry be
presented.



CHAPTER2
Background

The following section will focus on the theoretical background for a guided troubleshooting system.
Methods that are used in the industry today will be presented along with newer and more experimental
methods presented in academic studies. Furthermore, experiments from other industries, like medical
and software development, will be presented for inspiration for future work.

2.1 What is Troubleshooting
The basic aspects of troubleshooting will now be explored. There are in general many different ways
to approach this subject, but the troubleshooting process can roughly be divided up into the following
four parts:

1. A symptom detecting part.

2. A diagnostic part.

3. A guiding solution part.

4. A testing part.

Literature by R. lsermann [Ise97; Ise05] explain these basic components in a troubleshooting system
as follows:

• A system that processes incoming data from either sensors, operators, technicians etc. and deter-
mining if the observed system is showing symptoms of a fault. This is in the literature mainly
described as a symptom detection system.

• When some symptoms are registered, the origin of these symptoms needs to be determined. This
step is in the literature referred to as diagnostics.

• When the diagnosis is known, a set of actions must be determined to stop the symptoms and get
the system running in its normal state.

• Finally, tests need to be devised to make sure the performed repair resolved the underlying fault
of the diagnosis.

The following sections will explain the above four aspects of troubleshooting in further detail.

2.1.1 Symptom Detection
Numerous symptom detection methods have been suggested in the literature. These can however
roughly be divided into two sections, namely an analytic symptom detection and heuristic symptom
detection. The analytical method looks at quantifiable measurable symptoms, like sensor readings.
Heuristic symptoms refer to the qualitative observations that operators or technicians encounter in
daily operations (smells, noises, oil on the floor etc.) [Ise97]. Within the analytical method different
ways to determine the state of the system exist:
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• Limit value checking: If some values exceed some predefined thresholds.

• Signal processing: The use of signal processing algorithms to determine if the system’s character-
istic values are not behaving correctly. This could be the use of anomaly detection.

The heuristic symptoms are more loosely defined. Here most observations are made by an operator
or technician and can be defined as a data point. An asset’s history can however also be included in
heuristic data and will altogether be referred to as operational data.

2.1.2 Fault Diagnostics
To be able to find the diagnosis that is causing the showed symptoms, both the analytical symptoms
and operational data must be taken into consideration. Because, sensor data may indicate a heating
system must be replaced, but if it can be seen in the operational data that the temperature sensor
has been replaced lately, it is perhaps more likely that the new sensor has some production fault.
Here operational data can be expressed as statements such as that different parts have been inspected,
repaired or replaced. But it can also be expressed as fuzzy logic, so for instance, how loud is a noise is
on a scale.

One diagnosing approach is to unify the analytical symptoms and operational data and then apply
different methods for diagnosing, for instance, classification- or reasoning methods. The classification
method could for instance be a deep neural network, as it can accommodate for the non-linearity that
is present in the data. But it is also possible to explain the causal relationship as a Bayesian network,
which is something that Dezide is doing and will be explained in more detail in section 2.2.1 [Ott12].

Another approach is to analyse the analytical symptoms separately to predict the different diagnosis
probabilities. Then the diagnosis probabilities and the operational data can be unified and the same
approach as before can be used. This would result in a simpler classification- or reasoning method, as
it should work on less complex data.

2.1.3 Guided Solution
When a diagnosis has been determined, a series of actions should be performed by an operator or
technician to resolve the underlying fault of the diagnosis. It becomes increasingly harder for humans
to keep up with the complexity of modern machines and technical components [Gup+18].

The information needed to repair an underlying fault can either come from previous knowledge
about the diagnosis, technical documents, or a ”trial-and-error” approach [DSH19].

Several different methods and tools have been suggested to guide or assist technicians in the repair
phase of troubleshooting. The technical manuals can be utilized to correct known faults by guiding
the technician based on ”if this then that” principles [Gup+18]. But troubleshooting mainly relies on
the technician’s ability to identify the issues and come up with steps to solve it themselves. Here the
technician must be well educated in the components they are working with and can visualize the inner
functions of the machines [DSH19].

2.1.4 Testing
When a repair of a fault has been conducted it is important to make sure that the repair solved the
problem. For this, a test must be devised to test the state of the system or sub-system. Different test
strategies can be applied, where some are listed below [TRY21]:

• Analytical strategy: Testing based on predefined requirements or risks.

• Model-based strategy: Takes an expected situation and creates a model for it. Here the test
accounts for input, output and expected general behaviour (E.g. the testing of a web application
- max/min traffic, input signals etc.).



2.2 Guided Troubleshooting in Industry 7

• Methodical strategy: Follow predefined standards like ISO standards or internally defined.

• Standards compliant or Process compliant strategy: Process and guidelines for the exact behaviour
of a system based on industry experts (E.g. food and drug operations have minimum requirements
for the quality of their products).

• Reactive strategy: Testing is done as the system is deployed (E.g. software is released in beta
versions so users test if there are any bugs).

• Consultative strategy: Key stakeholders define the conditions and requirements/scope of the test.

• Regression averse strategy: Testing to avoid the regression risk (E.g. when a system becomes
increasingly more complex, the probability that new changes will cause problems for existent
functionalities increases).

Depending on the type of asset, different test strategies can be utilized. Manufacturing equipment
is for instance quality controlled based on a standards-compliant strategy where parts are inspected
if they fall within some predefined tolerance [Gho+19]. A test point (being either logical or physical)
is used to identify symptoms of that system or subsystem. Here either automated measurements can
be made or a manual inspection is needed. The combination of these tests will be fundamental for
evaluating fault diagnosis. The basic aspects of troubleshooting were explained as; symptom detection,
fault diagnosis, testing, and counteractions. The flow of troubleshooting is described in fig 2.1.

Figure 2.1: Flow of the troubleshooting process. If a symptom is detected a diagnosis is performed.
A technician tries to repair the system. If the test tells that the problem is resolved the
system should look for new symptoms, if not, the diagnosis should continue.

2.2 Guided Troubleshooting in Industry

2.2.1 Dezide
Dezide markets themselves as a system that provides AI-powered interactive troubleshooting. Their
system is focusing on interactively guiding a technician to locate the problem via statistical questioning.
This means that the system states a question, and based on the technician’s answer the system states
a new question until the problem is identified. This could e.g. be ”did loosen the bolt decrease the
pressure of the tank? - Yes or no.”
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2.2.1.1 Technology

Dezide uses a combination of different technologies. The backbone of their system is based on a Bayesian
network which combines a directed acyclic graph (DAG) with local probability distributions. The local
probability distributions are represented as nodes in the network and the edges between the nodes are
then the causalities. This means that if node A can be caused by node B, then there is an edge from
node B to node A. An example of a Bayesian network can be seen in figure 2.2

Figure 2.2: Example of a Bayesian network.

From figure 2.2 it can be seen that beautiful weather depends on if it snows if it rains, and the
temperature. It could for instance be beautiful weather if it snows and does not rain, regardless of the
temperature. It could also be that the weather is not beautiful due to low temperature, no snow, and
no rain. Rain and snow both depends on the temperature and the participation, as it can only snow or
rain if there is participation and it will either rain or snow depending on the temperature. Then the
roads could be either not slippery, a little slippery, or very slippery depending on if it snows or rains.
The specification of the whole network can be stated as the following probability tables:

P(Temperature) P(Participation)
P(Snow|Temperature,Participation) P(Rain|Temperature,Participation)
P(Beautiful weather|Temperature,Snow,Rain) P(Slippery roads|Snow,Rain)

As the table shows, the probability distributions of the different nodes are straightforward to define.
The particular distributions themselves are however not straightforward, as they either require experts
to estimate the distributions, infer numbers from historical statistics, or a combination of both. [Ott12]

The backbone Bayesian network is combined with utility theory. Utility theory is shortly described
as a way to make better decisions. There exists two types of decisions, which are test decisions and
action decisions. Test decisions are also referred to as observations, which is exactly what the nodes in
a Bayesian network are. Action decisions, referred to as actions, are something that can be performed
to affect the state of the given environment.

So when utility theory and a Bayesian network are combined it forms a decision tree with different
types of nodes, namely observation-, action-, and working nodes. Working nodes are just a node that
asks whether the previous action solved the problem. So an example of such a tree could look as in
figure 2.3.
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Figure 2.3: Example of decision tree. A, action nodes. W, did it solve the issue nodes. O, observation
nodes. Diamonds, the issue is resolved.

For each of the action nodes, A, an action can be performed. Depending on the action, it will move
on following the edge for the particular action. Each action node is followed by the W node, which
asks if the issue is resolved. If it is resolved the job is done, but if not it moves on following the n
edge. If it comes to an observation node, O, then it makes an observation and moves on according to
the observation. It will continue until the issue is resolved. One route from the root of the tree to a
diamond node is called a strategy, so a decision tree contains multiple strategies. The goal is now to
find the optimal strategy. That is the strategy with the maximum expected utility.

2.2.1.2 Associated Problems

So as seen in the previous section, Dezide uses a technology that is capable of mapping out all the
different strategies to resolve every single issue that can occur. This makes the system perform really
well once it has been configured for the given use case.

While the combination of Bayesian networks, decision trees, and utility theory creates the foundation
for a very well-performing system, it has its downsides. To actually define all the different strategies
for all of the different issues, requires a lot of manual work. It requires several experts to estimate prior
probabilities for the different observations and define the different actions that can be performed at
which nodes. This means that it requires a lot of time to implement this solution to the different use
cases. Even if the use cases are the same the different strategies and actions might be very different.
Expanding the system with new failures is also a manual process where new probabilities must be defined
and new guides for the technicians must be created. The big bottleneck is therefore the implementation
time and the ability to scale and adjust to new failure instances.

2.2.2 CMMS Systems
Computerised maintenance management systems (CMMSs) are the most widely used software solutions
to manage larger systems with many complex subsystems. They allow operators to schedule mainte-
nance and repairs and log the history of an asset over time. Wienke et. al. [WHV16] argues that the
use of computerised solutions for repair and maintenance are essential as a system becomes more and
more complex. This system has the following features according to Lopes et. al. [Lop+16]:

• Analysis of failures to reduce its occurrences, and to plan maintenance activities and condition
monitoring.
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• Access to the information in real-time at different places to facilitate technicians actions.

• Support scheduling functions attending both maintenance, technician availability, and production
plan.

• Support performance assessment and improvement initiatives.

• Track the movement of spare parts.

These systems lack proper utilization of the incoming data streams for the assets they are monitoring
and controlling. The key deficiencies with these systems are according to Labib et. al. [Lab04] as follows:

• The use of the data collected from the individual machine is very sparse.

• Expensive ”off the shelf” software solution is bought without fully integrating it in the correct
business.

• Lack of decision-related software - If a failure is detected, no suggestions on how it should be fixed
are made.

• The role of the CMMS system is often deduced to just being a database of spare parts and as a
scheduling software.

• Not very user-friendly systems.

• Users’ lack of trust in complex mathematical models.

The main takeaway is the need for better mathematical- or AI models that can utilize the huge
amount of data companies are collecting from their assets.

2.3 Guided troubleshooting in the literature
Now that some of the relevant actors in the industry have been presented it makes sense to present some
of the methods from the literature within guided troubleshooting with a special focus on diagnostics
and the use of synthetically generated data.

Zhang et al. in [Zha+17] reviews the most common methods within diagnostics of industrial assets
and equipment. Many of the methods are based on classical signal processing. The signals coming from
the sensors on the asset are denoised and features are extracted using various methods such as kernel
density estimation (KDE) and frequency domain features using the Fourier transform. A classifier can
then be fitted on the extracted features using different classification algorithms such as the support
vector machine or random forest classifiers. Zhang et al. argue that the problem with this method
within the fault diagnosis context is the need for domain experts to validate the quality of the extracted
features. Furthermore, the feature extraction transforms the signal data so the temporal coherence of
the data is lost which can have a big effect as the context of a data point is lost.

Several articles have looked into the use of time series classification algorithms that takes the raw sen-
sor data as input instead of a prepossessed dataset. The aim of this method is to eliminate the need for
prior knowledge about a system. One such method is proposed by Pan et al. [Pan+17]. They have devel-
oped the deep neural network liftingNet. The network is especially designed to handle noisy mechanical
data much like the one expected from big industrial assets like wind turbines that are investigated in
this thesis. To be even more detailed the network is optimized for rotating mechanical actions that are
sampled at a high frequency such as a bearing of transmission shaft. The network is however designed
for univariate time series which highly limits its use as a generic diagnosis system. In [Zha+17] a similar
model was developed to diagnose faults on a bearing. These models for specific components are very
effective with accuracy scores in the high 90’s but suffers from the same limitations as mentioned above.
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Liu et al. [Liu+19] tried to deal with the issue of unbalanced fault versus normal states. They
do this by generating synthetic data from the sensor data coming from a set of wind turbines when
they are experiencing some failure. They use a Generative Adversarial Network (GAN), which learns
the distribution of the provided data and generates new data that follows the structure of the original
dataset. The problem they are investigating is however not a diagnostic problem but rather a detection
problem which in general are simpler. The GAN is also helped a long way by domain experts defining
the low-frequency patterns of the individual sensor before the GAN is applied. The GAN therefore only
needs to add the final details that are too complex for a human to identify. The results obtained in this
paper is promising as they manage to increase the correctly detected faults by adding generated data.

2.4 Perspective to Other Industries
This project will focus on troubleshooting industrial assets. But other industries are relevant to explore
for inspiration and techniques. One of these industries is the medical sector. Here it is fairly easy to
view a patient as an asset with some kind of failure showed through a series of symptoms and the doctor
or nurse as a technician. Patients are being monitored by both analytical and heuristic methods when
at the hospital, but when going about their life only a few analytical measurements are used to monitor
their health. The use of wearable health sensors is used more and more in recent years to explore the
benefit of catching critical conditions for patients.

In [Cli+13] such an experiment was carried out on 200 post-operation cancer patients. Here the
patients were equipped with a sensor that measures everything from heartbeat to blood oxygen satura-
tion levels. One of the main issues with monitoring patients is to determine a normal state, as different
individuals have very different lifestyles. Here a large set of normal measurements from other patients
can help determine the accepted values expected by a given patient. This problem is easier with indus-
trial assets as their normal operation is more clearly defined and operations are more predictable across
the same asset type [Hay+00]. Features were extracted from the incoming sensor data and combined
with the clinical observations by the doctors in a tabular manner. For predicting if the patient would
experience severe complications a support vector machine was used to classify the abnormalities in
the 200 cancer patients with promising results. For diagnostic a series of models have been explored.
Here successfully diagnosed patients’ symptom data have been used to train a classifier (Naivë Bayes,
Neural network, decision tree and KNN) to investigate if it was possible to determine a patient’s illness
solely based on their data from monitoring sensors [Kon01]. Several real-world cases were presented
with interesting results. These use cases are relevant for the detection and diagnosis of industrial assets.

Another industry that is relevant to gain inspiration from is the software development industry. Here
a lot of resources is used on fixing problems (bugs) and testing code. The process of debugging a piece
of software can be a cumbersome process as it is often hard to isolate the real source of the problem.
In [ESK18] an AI method was used to detect and diagnose potential bugs in software components.
Training data was collected using commits from a version control software on open source projects.
Here the bugs referred to the file where the changes were made. This made it possible to automatically
create a labelled dataset where the developers continuously generated training data for the classifier.
For diagnosing the faults based on the detection the use of the Barinel software diagnosis algorithm is
proposed [AZV09].

2.5 Observed Issues
Troubleshooting is known to be a complex problem and other studies have tried to solve it in different
ways as described in the previous sections. The common issues from the different studies are summarised
in the following sections.
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2.5.1 Data Foundation
No matter which approach is used to solve the troubleshooting problem it requires some form of data.
It can both be data stored in computers, but also data stored in humans who are experts in the given
area. As in many other cases, good quality data can be hard and expensive to obtain and that also
applies to the troubleshooting problem. The reasons for this are mainly:

• Fault data must be asset type-specific.

• Fault data can occur very rarely.

In many cases, the fault data must be specific to the type of asset, as assets can be built very
differently and therefore do not share the same structure and thereby faults. As some faults only occur
once every e.g. fourth year then those faults are not as likely to be present in the data or are very
sparsely represented. It is also worth mentioning that companies owning an asset are most likely not
interested in sharing their assets’ data openly as other companies potentially can reverse engineer the
inner workings of the system.

2.5.2 Implementation Time
Due to the sparse amount of failure data an efficient system traditional needs to be configured by
humans where the internal causality between a failure and symptoms needs to be mapped out. The
specification of an asset, therefore, needs to be understood by individual technicians. Furthermore does
the need to create guides for the technician take extensive time.

2.5.3 Single-fault vs. Multi-fault
Many existing solutions are designed only to predict single-faults. This assumption of only one fault
occurring at the same time does not translate to an operational setting. This problem has been the
subject of much research. One article by Shakeri et al. [Sha+94] tries to solve this issue with a strategy
called SURE. This strategy is a test-and-repair strategy that will continue to repair parts of the system
until the whole system is functioning again. This solution avoids the super-exponential computation
complexity of O(2m). Ottosen [Ott12] also tried to expand their Bayesian network approach to allow
multi-fault detection but failed to deliver a theoretically and practically satisfying solution. This could
indicate that a new approach is needed to create a satisfying solution. It is however most likely not
necessary to consider multi-fault if a system or asset is frequently assessed according to [Sha+94], as
the probability of faults occurring at the same time is reduced.

In this section, companies and systems within the guided troubleshooting industry have been pre-
sented. The technologies forming the backbone of their systems are based on Bayesian networks. This
allows them to model the relationship between the different components of the system. To implement an
operational system does however include the mapping of components functional dependencies and the
extensive indexing of actions associated with a fault. Furthermore, the most common software solution,
CMMS systems, has been presented. A review of the most popular version of these systems suggests
the need for more intelligent systems that utilize the data streams from a organisations assets. Finally,
inspiration from other industries such as software development and the medical industry have been
explored. Knowledge and methods generated here could be a relevant inspiration for troubleshooting
industrial assets.



CHAPTER3
Theory

In the following section, the theory used throughout the experiments will be presented. The section
is structured so the most basic elements of time series are presented first. Next, the principle of deep
learning is presented followed by the state of the art classification algorithms used in the experiments.
The different elements of GANs are then explained and finally, the evaluation metric used to determine
the performance of the classification models and the quality of the generated data from the GANs are
covered.

3.1 Time Series
A time series is a set of data points that occur in chronological order, where each data point has a
certain value for a certain point in time. Time series are most commonly appearing with data points
that are equally spaced in time, but they can also appear with data points randomly spaced in time.
Time series data can occur as a univariate time series, which consists of a single time-dependent variable,
but also as multivariate which consists of multiple time-dependent variables. In a multivariate time
series, each variable not only depends on the time but also depend on the other variables. Examples
of univariate time series data could be ECG data or stock data, as it only consists of signals from one
sensor or source. To analyse such a time series it necessary to look at the temporal dependencies. In
the multivariate time series case, it is not only necessary to look at the temporal dependencies but also
the dependencies of the different sensors or sources of data. An example of this could be EEG data,
where multiple sensors record signals over time.

Figure 3.1: Examples of a univariate and multivariate time series.

Figure 3.1 shows two simple examples of the univariate and multivariate time series. As seen, the
multivariate consists of multiple sources of data but can still be viewed as a single plot with a line for
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each of the sources.

3.1.1 Spectrogram
Another way to look at time series is to look at their spectrograms. This will be used in the generative
models, which will be explained in section 3.4.3. A spectrogram is a visual representation of the different
frequencies in a time series over time. So for instance the time series in figure 3.2 could be represented
as the spectrogram in the same figure. It can be seen from the spectrogram that the frequency changes
from a low frequency to a higher frequency around the middle of the time series. The intensity change
in the colour reveals that the amplitude also changes. In the multivariate case, a spectrogram would
be created for each of the sensors.

Figure 3.2: Examples of a univariate time series with frequency variation over time. On the left the
time series can be seen and on the right its spectrogram can be found.

3.1.1.1 Short-Time Fourier Transform - STFT

To calculate the spectrogram for a given time series it is desired to know which frequencies the time
series consists of and when. The frequencies can be calculated with the discrete Fourier transform which
has the formula seen in equation 3.1. Here X(k) is energy provided by frequency k for the time series
x and N the length of the time series.

X(k) =
N−1∑
n=0

x(n)e−j 2π
N kn (3.1)

The idea behind the discrete Fourier transform, DFT, is that any signal can be represented by adding
multiple waves with different frequencies and amplitudes. The issue with the DFT is that it does not
catch the variation of frequencies over time. Short-time Fourier transform solves this by applying the
DFT in the manner of a sliding window over the time series. The formula for STFT can be seen in
equation 3.2. Here X(m, k) is the energy provided by frequency k for window number m, w the window
function, N the size of the window, and H the hop size.

X(m, k) =
N−1∑
n=0

x(n + mH)w(n)e−j 2π
N kn (3.2)
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As equation 3.2 shows, the signal x(n) from equation 3.1 is now exchanged with a new signal
x(n + mH)w(n). This new signal is the signal for time n for the window number m. This basically
means that the STFT calculates the DFT for a specific point in time by only looking at the values
within the window. The type and size of the window are changeable parameters that influence the
time-frequency precision trade-off.

Figure 3.3: Examples of how the window size in the STFT affects the spectrogram of the signal from
figure 3.2. The left figure uses a small window size, the middle a large window size, and
the right a balanced window size.

Figure 3.3 shows how the size of the window influences the spectrogram. From the left spectrogram
in the figure, it can be seen that is really easy to determine when in time the signal changes in frequency.
But it is, however, hard to see which frequencies it changes from and to. This is due to a small window
size as it would not have many data points to determine the frequency from, which also is the reason
why it quickly adapts to variation in frequency. In the middle image of the figure, a spectrogram can
be seen where a large window size is used (as large as the length of the signal). Here it is easier to
see the exact frequencies, but it is hard to see where the frequency changes, as it looks like the whole
middle part of the signal consists of two different frequencies. This is caused by the large window size
as it has many data points to determine the frequencies from, which also means that the frequencies
will leak into the adjacent points in time. The right figure has a balanced window size, where it is both
possible to determine where in time the frequency changes, but also which frequency it changes from
and to. It however still shows leakage in both dimension

The window type also affects frequency leakage and frequency resolution. In figure 3.4 two different
window shape types and their Fourier transformations are shown.
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Figure 3.4: The Hann and Blackman windows and their Fourier transformations[Nie13b; Nie13a].

From figure 3.4 it can be seen that while the windows look quite similar, but their spectral shape
are quite different. In the Fourier transform of the Hann window, it can be seen that the main lobe is
more shallow compared to the main lobe of the Fourier transformation Blackman window. The more
shallow this lobe is, the higher frequency resolution is obtained, which results in the window being
better to distinguish close frequencies. But on the other hand, the distance from the top of the main
lobe to the top of the adjacent lobes is small. This means it will have more spectral leakage and thereby
provide amplitude to the surrounding frequencies. From the figure, it can be seen that is opposite in
the Blackman window. Here the width of the main lobe is large and the distance from the top of the
main lobe to the top of the adjacent lobes is large. So this results in lower frequency resolution but less
spectral leakage, hence there is this trade-off.

3.2 Deep Learning
Deep learning models will be used throughout the project to both to classify a given fault based on
time series data and generate synthetic data. It is therefore necessary to understand the theory behind
the different elements of deep learning, which will be described in the following sections.

3.2.1 Perceptron
The simplest artificial neural network architecture is the so-called perceptron, which was invented in
1958 by Frank Rosenblatt [Ros58]. Its goal is to mimic a biological neuron, where it takes multiple
input and convert it to a single output. But instead of only working with binary values, it uses numbers
as inputs and output. A single perceptron looks as figure 3.5 below:
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Figure 3.5: A perceptron with three inputs and hence three weights.

Here it can be seen that for each of the inputs, there is a weight associated with it. The perceptron
works by computing the weighted sum of its inputs and applying an activation function, which can be
seen in equation 3.3.

z(x) = h(xT w) (3.3)

Here z(x) is the output of the perceptron for the input x, xT is the column vector containing the
inputs, w the row vector containing all the weights associated with the inputs, and h the activation
function.

Figure 3.6: A perceptron layer with three hidden nodes, where each input is connected to every hidden
node. The hidden nodes are also affected by a bias (b).

The perceptrons can also be stacked to form a perceptron layer, which is illustrated in figure 3.6.
This layer has multiple perceptrons that produce an output each but all have the same inputs. However,
now there exists a weight for each of the connections from the input layer to the perceptron layer. This
means, that having different weights will make the outputs of the perceptrons different. Having different
outputs from the different perceptrons is equal to extracting or computing different information for each
of the perceptrons. The output vector z can be computed as equation 3.4.

Z(X) = h(XW + b) (3.4)

Here Z(X) is the output for the input X. It can be seen that X is now a matrix as it computes the
output for multiple input instances. So each column is a new input instance and each row represents
the inputs. This also means that the output Z(X) is a matrix with a row for each input instance and
a column for each of the output perceptrons. W is also a matrix for all the weights, where each row is
the weight vector for the given perceptron. b is introduced as the bias term, which can be seen as an
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additional input of the value 1 and its weights; b1, b2, b3. These biases affect how easy it is to get the
neuron to trigger [Gér19].

3.2.2 Multilayer Perceptron - MLP
When combining multiple of the perceptron layers described in the previous section, they form a multi-
layer perceptron, also referred to as an MLP. Each of the layers is called hidden layers, except for the
first and last, which respectively are referred to as the input layer and output layer. Here the outputs
for each layer gets transferred as input to the next layer, to allow for further feature extraction. When
all the outputs from one layer get transferred to all the neurons of the next layer it is called a fully
connected layer, and is illustrated in figure 3.7 below:

Figure 3.7: A multilayer perceptron with two hidden layers, each with three nodes, and a output layer
with two nodes.

As seen from figure 3.7, it now looks more complicated with connections everywhere. But with the
power of linear algebra and a little help of recursion, it can mathematically be expressed as equation
3.5.

Y (X) = ZL

Zl = hl(Al) l = 1, . . . , L

Al = Z(l−1)Wl + bl l = 2, . . . , L

A1 = XW1 + b1

(3.5)

So as seen from equation 3.5, the goal is to calculate the output matrix Y (X), which is equal to the
output matrix, Z, of the output layer, L. The output matrix, ZL, is then calculated by the activation
function for that layer, hL, on the output matrix from the previous layer, ZL−1, times the weight matrix
for the output layer, WL, added with the bias vector of the output layer, bL. Now the output matrix
from the previous layer, ZL−1, get calculated recursively till the first layer is reached, which will just
use the input matrix, X, instead of the output from the previous layer, as there is no previous layer.
This procedure of calculating the output matrix Y (X), is called a forward pass [Gér19].

3.2.3 Backpropagation
Now that the input has been fed forward through the network, the network should measure how far it
was from the true values. This measure is called a loss and can be calculated with different loss functions.
When the loss has been calculated, it is time to update the weights of the network to minimize the loss
and in that way make the network learn. To change the weights some variant of stochastic gradient
descent usually is used. This means that the weights should change according to equation 3.6.
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wnew = w − η∇C(w) (3.6)

Here the new weight vector of a layer can be calculated by subtracting the gradient of the loss
function, ∇C(w), for the given weight vector times a learning rate, η. To do this for all the layers,
the error has to be backpropagated down through the layers of the network. This follows the general
backpropagation formulas BP1, BP2, BP3, and BP4.

δL = ∇aC ⊙ h′
L(ZL) (BP1)

δl = ((W l+1)T δl+1) ⊙ h′
l(Zl) (BP2)

δC

δbl
j

= δl
j (BP3)

δC

δwl
j,k

= al−1
k δl

j (BP4)

Here it can be seen that BP1 is used to calculate the gradient matrix, δL, of the output layer, where
each element in the matrix corresponds to the gradient of the weight for an input instance for the output
layer. ∇aC denotes the matrix containing the partial derivatives δC

δaL
i,j

, which are the derivatives of each
of the activations in the output layer with respect to the loss function. This matrix will element-wise
be multiplied with the matrix containing the derivatives of the activation function for the output layer,
denoted as h′

L(ZL).
BP2 then makes the same approach as BP1 for calculating the gradient matrix of the lth layer, but

on the gradients and weights from the (l + 1)th layer. Here (W l+1)T denotes the transposed weight
matrix of the (l + 1)th. When that matrix is multiplied with the gradient from the (l + 1)th layer, δl+1,
it moves the gradients backwards down a layer in the network, which gives a measure of the gradient,
error, of the lth layer. This gradient matrix of the lth layer is then element-wise multiplied with the
matrix containing the derivatives of the activation function for the lth layer, denoted h′

L(Zl), just like
in BP1.

So with BP1 and BP2 it is possible to calculate the gradients for all the layers in the network. From
BP3 it can be seen that the change in the bias vector of a layer is just equal to the gradient vector of
a layer. From BP4 it can be seen that the weights of a layer are changed with the activations of the
(l − 1)th layer multiplied by the gradients calculated for the lth layer.

However, the δL and δl in BP1 and BP2 are matrices, as they hold the gradients for each of the input
instances. So to use them for changing the biases and weights in BP3 and BP4, the average gradient for
each of the biases and weights have to be calculated. This is done to calculate the true gradients of the
weights. But as neural networks are most commonly trained on mini-batches, the gradients calculated
are the stochastic gradients, which is the reason behind the name, stochastic gradient descent.[Nie15]

3.2.4 Activation Functions
In the previous section, it was seen that an activation function was used with the perceptrons. But what
is an activation function? An activation function is basically just a function that takes in a number
and translates it into some other number. So it could for instance just be a function that adds 1 to the
number or a function that just outputs 1 all the time. But none of those is actually good choices of an
activation function.

First of all, the activation function should represent a function where its derivative is well defined
everywhere and is not 0 everywhere. This is necessary to be able to calculate the gradient no matter
what the value is, and make sure that the gradient is not 0 all the time. If the derivative would be 0
everywhere, the gradient would not allow the network to learn.

Secondly, an activation function should be non-linear. Because two chained linear functions will just
output another linear function. For instance if the two functions f(x) and g(x) looks like equation 3.7.
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f(x) = 3x + 7 (3.7)
g(x) = 4x + 2 (3.8)

Then f(g(x)) would look like equation 3.9

(g(x)) = 3(4x + 2) + 7 = 12x + 7 + 7 = 12x + 14 (3.9)

So without this non-linearity between the different layers in the network, then a deep network could
just have been expressed as a single layer network.

Four of the most common activation functions can be seen in figure 3.8 along with their derivative.

Figure 3.8: The sigmoid, tanh and ReLu activation functions and their derivative.

As it can be seen from figure 3.8, the derivative of the ReLu- and Leaky ReLU activation function is
actually not well defined for 0. So the derivative for this is implementation-specific. It however works
very well in practice due to its fast computation time. And the fact that it does not have a maximum
output value helps to avoid the vanishing gradient problem, as the derivative will not converge to 0 for
large values.

3.2.5 Convolutional Layers
While multilayer perceptrons, MLPs, show great results, they have their limitations and flaws when used
for data that is not tabular. For instance when looking at image data or time series data where data
points are stored in a spatial structure. An MLP would have connections between all data points mean-
ing not taking the spatial structure into consideration. Therefore convolutional layers are introduced,
as they try to extract local features by using local receptive fields.

In the example in figure 3.9 it can be seen that the feature, p1, in the first convolutional layer gets
calculated based on the input values x1, x2, x3. This is because in this example a kernel of size 3 is used.
This kernel is just a weight vector (matrix if in 2D) that can be slid over the input values to calculate
all the local features. This slide is referred to as stride, which also can be set to different values than 1.
As seen in the first convolutional layer of figure 3.9, p1 gets calculated by the first three input values,
while p2 gets calculated by the input values x2 to x4, p3 by x3 to x5 and so on. It is also illustrated
in the figure how the local features get calculated by the same kernel, as each feature gets calculated
with the same weights, represented by the coloured connections. This means that the weights of the
kernel will be learned based on the whole time series and hence learn a general feature of the input such
as an increase, decrease or bump in the values. Therefore it is necessary to use multiple kernels, such
that multiple features can be learned in each layer. The reason why multiple features will be learned
is due to the random initialization of the weight. The amount of different kernels to use in each layer
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is referred to as out channels [Nie15]. A concrete example of a kernel striding over a time series can be
seen in figure 3.10.

Figure 3.9: Part of a convolutional network with convolutional layers.

Figure 3.10: Concrete example of a filter striding over a time series.

In the convolutional layers of figure 3.9 and 3.10 it can be seen that the number of dimensions
decreases. This decrease in dimensions can be omitted by introducing padding to the input. So for
instance in the example from the figure, padding of one 0 can be inserted on both sides of the input
layer, which would mean that the number of dimensions in the first convolutional layer would be the
same as the input layer.

The exact formula for calculating the jth output feature for ith kernel can be written as:

pj,i = h(bi +
k−1∑
l=0

wi,laj+l) (3.10)

In equation 3.10 bi denotes the bias for out channel i, wi,l weight l for out channel i, k the kernel
size, and aj+l the activation from the j + l′th neuron from the previous layer. h denotes the activation
function for the layer as usual. So from this it can be seen that each kernel shares the weights and bias
for all receptive fields. This not only makes the kernels learn more general features across the entire
time series, but it also greatly reduces the number of parameters to be learned. It should be seen that
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the amount of learnable parameters in the convolutional layer does not depend on the length of the
time series, which makes them computationally faster.

3.2.6 Regularization Methods
When training deep learning models on some training data the models will tweak their parameters to
minimize the loss. Eventually, if the model is complex enough, the loss will approach 0 and thereby
the accuracy approach 100%. However, this does not necessarily mean that the model has generalized
well. This only means that the model has adapted to the training data. Therefore it is necessary to
validate the model against a validation dataset that is not a subset of the training dataset. If the
model generalizes well, then the loss and accuracy for the training data and the validation data would
follow each other. If the model starts to perform better on the training data than on the validation
data, then it is a sign of overfitting. An example of this can be found in figure 3.11, where the training
loss continues to decrease for each epoch, but from epoch 10 the loss for the validation data begins
to increase. This indicates that from epoch 10 the models start to overfit and adapt too much to the
training data instead of generalizing.

Figure 3.11: Example loss for overfitting model.

3.2.6.1 Early stopping

One method to avoid overfitting is by stopping training once the model starts to overfit. This method
is referred to as early stopping. In the example from figure 3.11, the model would stop training at epoch
10. Of course, the model should not stop training as soon as it sees an increase in the validation loss
as the loss curve can be noisy and therefore lead to too early stopping. Therefore early stopping works
with something called patience. The patience of 10 would for instance mean that the model would stop
training if it has not improved for more than 10 epochs on the validation dataset. Then it would roll
back 10 epochs and use those parameters in the final model.

3.2.6.2 Weight Decay - L2-Regularization

While early stopping is a good method to avoid overfitting and to avoid doing unnecessary training
it would be more preferred if it was possible to bring the two loss curves closer to each other, which
would result in a better validation score and no overfitting. This is exactly what weight decay does
(also referred to as L2-Regularization). Weight decay works by adding an additional term to the loss
function, which can be seen in equation 3.11:
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L = L0 + λ

2n

∑
w

w2 (3.11)

In equation 3.11 L0 is the original loss function and the last part is the added regularization term.
The term basically adds the sum of all the squared weights in the model which are scaled by λ

2n . Here
λ is the regularization parameter. This effectively downscales the weights in the weight updating rule
from equation 3.6 by a factor of 1 − ηλ

n , as λ
n w is added to the partial derivative of the loss function

[Nie15].

3.2.6.3 Dropout

Another method to avoid overfitting but without modifying the loss function is dropout. Dropout
essentially drops a few of its neurons in the models training process. It does that by randomly setting
some elements of the input vector to 0. Each element in the input vector has the probability p of being
dropped. As the weights and biases in the model are learned when only using a certain amount of the
neurons, the output of the neurons must be scaled according to the dropping probability, p, such that
the neurons will receive values in the same scale as they were being trained on.

Figure 3.12: Dropout in an MLP.

In figure 3.12 it can be seen how an MLP has adapted to a random dropout. So here only one
neuron in the first layer is active and two in the second layer. So this means that only the connections
between those neurons are active. The next time data will be fed forward in the network, it will choose
new random neurons to deactivate. The reason why dropout is regularizing is that it essentially trains
multiple different models and combine them when evaluating. So it actually makes up an ensemble of
different models and averaging the effects of a very large number of different models.[Nie15]

3.2.6.4 Batch Normalization

Batch normalization is also a widely applied method for training deep learning models. While it is
actually not intended as a regularization method, it is affecting the network in a regularized way. Es-
sentially batch normalization is ensuring that the outputs of a certain layer in the network is distributed
around zero with a standard deviation of one. It does that by the following four formulas:
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µ = 1
N

N−1∑
i=0

Zi (3.12)

σ = 1
N

N−1∑
i=0

(Zi − µ) (3.13)

Zinorm
= Zi − µ√

σ2 − ϵ
(3.14)

Ẑ = γ ∗ Zinorm + β (3.15)

Here equation 3.12 and 3.13 calculated the mean and standard deviation across activations of the
outputs, Z. Those statistics are then used to normalize the batch in equation 3.14. In equation 3.15
the output of the layer is calculated by applying a linear transformation with the variables γ and β. γ
and β are learnable parameters that adjust the standard deviation and bias respectively.

Originally batch normalization was developed to reduce internal covariate shift [IS15] and thereby
reduced the convergence time. It has later been proved that batch normalization in fact did not reduce
internal covariate shift [San+18], but still evidently improved the convergence time. While the reason
batch normalization improves the convergence time is still to be concluded, it is now believed that it is
due to the smoothed loss landscape[San+18].

The reason why batch normalization is affecting the network in a regularized why is due to the
statistics (mean and standard deviation) calculated for each batch and transformed to make those
statistics fit a normal distribution with a mean of zero and a unit standard deviation. This trans-
formation essentially infers some noise to the data, as the non-deterministic way of sampling batches
leads to an instance being transformed differently in each epoch. This essentially makes it regularizing.
This also means that larger batch sizes result in less regularization, as the noise inferred by the batch
normalization is reduced as the true mean and standard deviation more accurately are estimated.

3.3 Classification Models

3.3.1 InceptionTime
The InceptionTime deep learning architecture was proposed by Fawaz et. al. in [Faw+20]. The authors
aim to improve the training time of time series classification models without compromising the accuracy.
Here the authors refer to the HIVE-COTE algorithm with high accuracy but with a computational time
of O(N2T 4). InceptionTime is inspired by the traditional ResNet and Google’s GoogleNet [Sze+15]
where the use of very deep convolution modules first was introduced. InceptionTime’s backbone is a
so-called inception module that consists of the following elements:

• A bottleneck convolutional layer with kernel size and stride of 1. This significantly reduces the
dimensionality of the input and reduces the number of parameters of the network.

• The output of the bottleneck is then sent through three convolutional layers in parallel. The
kernel size for each of the convolutional layers varies in size. The author presents the kernel sizes
of 10, 20 and 40. The input is padded beforehand to keep the output dimensionality.

• The input to the module is also passed through a max pool layer followed by a bottleneck layer.
This is to make the model more invariant toward small amounts of noise and disturbances in the
incoming signals.

• The output from the three convolutional layers and the maxpool-bottleneck layer is concatenated
to one collected output of the module.
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A figure of the inception module can be found in figure 3.13.

Figure 3.13: Inception time module: The bottleneck consist of a convolutional layer with a kernel size
of 1 and stride of 1. The convolution layers have their representative kernel size (10, 20,
40) and a stride of 1. The Maxpool has a kernel size of 3 and a stride of 1.

These inception modules are put together in sets of 3 with a residual connection between every third
module. This residual connection is to avoid the vanishing gradient problem and allow to train even
deeper models where more complex features can be extracted.

Finally, a global average pooling is performed across the multivariate time dimension followed by a
fully connected layer with the corresponding neurons to the number of classes. A softmax activation
function is applied to get the probability of each of the classes. The full network can be found in figure
3.14.

Figure 3.14: Inception time: Three modules are put in series with a residual connection to form a
block. two blocks are displayed here. The network ends in a global average polling across
the time dimension followed by a linear layer and a softmax activation function.

InceptionTime learns the features of the time series by applying different sized convolutional kernels
which are also called different sized receptive fields (from cognitive size). The authors argue that the
knowledge from image analysis can be applied to time series problems following the same arguments.
In image analysis, convolutional layers are used to extract features based on areas that are close to
each other. Larger receptive fields are necessary for the model to capture the context of the image. In
InceptionTime this principle is used by using receptive fields of size 10, 20 and 40. This also allows the
model to draw context from different sized perspectives and thereby extracting more complex features
from the time series. The concept of the receptive fields can be seen in figure 3.15, where it can be seen
how larger receptive fields look at more general features.
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Figure 3.15: Inception time receptive field: The convolution layers have their representative kernel
size (10, 20, 40) looking at different intervals of the time series thereby getting different
level of context to the neighbouring values.

3.3.2 ROCKET and MiniROCKET
The classification method called Random convolutional kernel transform or ROCKET was proposed by
Dempster et. al. in [DPW20]. The main purpose of the algorithm is to create a classification algorithm
that beats or rivals the state of the art time series classification algorithms but at the fraction of the
training time. The authors draw inspiration from deep learning where the use of convolutional networks
has had increasing success in recent years, both to identify features in images but also time series as
described in section 3.3.1. The idea is basically to create a large 1 layer network that transforms the
incoming time series. The single-layer consists of a number of randomly initialized kernels, meaning
that the sizes, weights, padding, dilation, and biases are randomly initialized. The parameters are
not learned, meaning there is no training involved in the transformation of the incoming data, unlike
with deep learning. Therefore a very large number of kernels can be applied without a big increase in
computational time. The authors suggest a default of 10.000 kernels. The variation of these different
kernels is highly spread out unlike with convolutional deep learning, where the kernels typically look
very similar in each of the layers. This allows ROCKET to capture a wider variety of features in the
time series. The authors highlight dilation as the most important factor for capturing these different
features. The kernels then stride over the time series, each extracting features from the time series.

The kernels’ parameter initialization are sampled randomly from the following options:

• Size: By experiment the authors reduced the number of different lengths to 7, 9, 11.

• Weights: Are sampled from a normal distribution w ∼ N(0, 1).

• Bias: Are sampled from an uniform distribution. b ∼ U(−1, 1)

• Dialation: Are sampled from an exponential scale where the following equation ensures that
the size of the kernel output matches the input time series. d = 2x, x ∼ U(0, A), where A =
log2

linput−1
skernel−1 .

• Padding: For each kernel an equal chance of applying zero-padding to the incoming time series is
randomly selected. The padding is depended on the size of the kernel so the middle of the kernel
starts in the first element of the time series and ends in the last element: ((skernel − 1) ∗ D)/2.

The kernel strides over the input time series following equation 3.16, where Xi is the value at time
i in the time series X, w the kernel, and d the dilation:
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Xi ∗ w =
skernel−1∑

j=0
Xi+(jd)wj (3.16)

For each kernel the output values are aggregated into two values, the maximum value and the
proposition of positive (PPV) values, which simply is the number of values above 0 divided with the
length of the time series as seen in equation 3.17.

ppv = 1
n

n−1∑
i=0

[zi > 0] (3.17)

Here n is the length of the time series and zi is the output values of the kernel. This results in
20.000 features if the authors’ recommended number of kernels is used.

A linear classifier is then applied to the transformed data. The authors suggest a logistic regression
classifier with ridge regularization for smaller datasets and a logistic regression classifier optimized with
stochastic gradient descent for larger datasets. The ROCKET transformer can be see illustrated in
figure 3.16.

Figure 3.16: ROCKET: thousands of kernels are created with random weights (represented by the
values in the cells), size, padding, dilation and bias (not illustrated in the figure). Each
kernel strides over the input time series creating a feature map. The feature map is
aggregated into two values the max and ppv.

Dempster et. al. continues their work in [DSW20] by creating the MiniROCKET transformer. The
method builds upon the previously explained ROCKET transformer. The authors tried to eliminate
as much of the random initialization of the different parameters and thereby making the method more
deterministic and faster. They experimentally optimize the original ROCKET transformer by finding
the most optimal set of hyperparameters. The hyperparameters now look as follows:

• Size: By experiment the kernel length is set to 9.

• Weights: Are not longer sampled from a normal distribution but rather set to either −1, 2.

• Bias: Are the only stochastic element in MiniROCKET. Here the bias is drawn from the output
of a random training sample. The bias is calculated by convolving the kernel, W , with the random
training sample, X, as follows W ∗ X. A random quantile for the output is then calculated and
used as the bias for the kernel, W , for the remanding training examples.

• Dialation: Are set to a fixed value adjusted to the input time series in accordance with the
previously presented equation.

• Padding: Is added for every other kernel/dilation pair, so roughly half the kernels will have
padding.
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The use of global max pooling have also been eliminated so only PPV is used as the feature aggre-
gated for each kernel. This results in a reduced output of half of the original ROCKET transformer.
This resulting method outperforms the original ROCKET transformer in training time without compro-
mising accuracy. The authors recommend that MiniROCKET should be used instead of the original
ROCKET.

3.4 Generative Adversarial Network - GAN
The first generative adversarial network (GAN) was introduced by Ian Goodfellow in 2014 [Goo+14].
The basic idea behind this is to have a generator model learn the underlying distribution of a dataset.
This is done by pitting the generator model against a discriminator network which job is to determine if
the input it receives is a true data sample or a synthetic sample from the generator model. Goodfellow
et. al. uses the analogy of a counterfeiter (the generator) trying to cheat a policeman (the discriminator)
into believing the fake money he is producing is actually real.

The discriminator and generator are both types of neural networks as these can be very good
at discovering and understanding the complex distribution present in most datasets. The generator
transforms a latent noise vector z into a sample from the underlying distribution of the dataset X
defined as G(z, θg) where G is the generator network and θd is the parameters of that network. The
discriminator transforms the input into a single scalar representing the probability of the input being
a sample taken from the true dataset, X, as D(x̂, θd). The discriminator’s job is therefore to maximize
the probability of separating the true and fake samples. In the meantime the generator’s job is to
minimize this distance between the true and fake samples. An illustration of the relationship can be
found in figure 3.17.

The discriminator gets either the true data resulting in loss function:

L(D(x)) = log(D(x)) (3.18)

or the fake data from the generator resulting in loss function:

L(G(D(z)) = log(1 − D(G(z))) (3.19)

The equations are derived from the cross entropy loss which calculates the difference between dis-
tributions. This results in a discriminator loss that wants to maximize expression:

LD = max(log(D(x)) + log(1 − D(G(z))) (3.20)

And the generator loss which will minimize expression:

LG = min(log(D(x)) + log(1 − D(G(z))) (3.21)

The combined loss function therefore looks as follows:

min
G

max
D

V (G, D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (3.22)

This known as the two-player min-max game, where the value function is V (G, D) and the generator,
G, tries to minimize the value function while the discriminator tries to maximize it.
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Figure 3.17: The basic idea behind a GAN. The generator network creates fake data samples trying
to capture the underlying distribution of the true dataset. The discriminator is trying
to maximize the distance between the two and the generator is trying to minimize it.

The difference between GANs and other popular unsupervised generative models like a variational
autoencoder, VAE, is the way the network learn. Where the GAN is a min-max two-player game between
the discriminator and the generator where the two networks try to outperform each other. VAE works
by an input is fed into an encoder that encodes the input into a hidden state. A decoder then tries to
decode a sample from the hidden state into a new sample. GANs have shown to outperform VAEs in
most synthetic generation tasks and will therefore be used in this project.

3.4.1 Conditional GAN
Conditional generative adversarial networks are simply a way to teach the generator model from which
class to generate an example from and to discriminate between the different classes [MO14]. This is done
by simply providing the label for the input sample. This is in practice done using an embedding layer
where the input label is embedded. The embedding layers have learnable parameters that are trained
during backpropagation. This embedding layer is both implemented in the generator and discriminator
so the generator learns to produce examples from a specific class and the discriminator learns to tell
them apart. The embedding for the generator can be seen in figure 3.18, here the label or condition is
inputted to the embedding layer and then concatenated with the input latent vector, z. An embedding
layer is simply a layer that has a series of weights that based on the label inputs return a series of
different values.
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Figure 3.18: The generator does not only get the latent vector z as input but also the class for the data
sample it needs to capture the distribution from. This is done through an embedding
layer with learnable parameters.

3.4.2 Wasserstein GAN with Gradient Penalty - WGAN-GP
One of the problems with GANs is the phenomenon called mode collapse. Here the generator is able
to minimize its loss by producing the same output every time and thereby not sufficiently covering
the entire underlying distribution of the dataset. Another problem is unstable training as the balance
between the two networks can be very sensible. The goal of the training is to find the equilibrium where
the discriminator has a 50% chance of telling if the input is real or fake as it is basically just guessing.
At this point, the generator has become so good at producing good samples that the discriminator no
longer can identify features that tell true from fake. This is the point where both models have fully
converged. These issues are occurring due to the way traditional GANs are trained by minimizing the
Jensen-Shannon divergence. Arjovsky et. al. shows [ACB17] that when utilizing the Jensen-Shannon
divergence to learn the probability distribution of a dataset with gradient descent some examples will
occur where this will fail to converge as the loss function is not continuous. Arjovsky et. al. shows
that by using the earth mover distance (Wasserstein distance) the function will in any case converge.
This is the fundamental idea behind WGANs. The Wasserstein distance describes the cost or energy
of converting one distribution to another. In the case of GANs, the synthetic distribution to the true
distribution. This is shown in equation 3.23. Here the greatest lower bound, inf , of energy, λ, is
measured to convert the generated distribution Pθ to the true distribution Pr by comparing a sample
from the true distribution, x, and the synthetic, y. In the article, [ACB17] they use the term critic
instead of discriminator as the discriminator no longer just returns rather or not the input is true or
fake but instead a scalar describing to what degree the input is true or fake.

W (Pr, Pθ) = inf
λ

Ex,y ||x − y|| (3.23)

The Wasserstein loss function is derived from the Kantorovich-Rubinstein duality [Gul+17] seen in
equation 3.24. Here the first term is the sample, x, of some true distribution of data where the discrim-
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ination of that sample is returned, minus a sample x̂ from a generator gone through the discriminator.
Note the constraint on of ||D||L ≤ 1 this term ensures that the norm of the gradient of the discriminator
stays between -1 and 1. This is to ensure that the Lipschitz continuity is preserved. This is, however,
to put it in the authors’ own words, ”a terrible idea!” as it creates instability for the weights of the
network to reach convergence.

min
G

max
||D||L≤1

= E∼Pr [D(x)] − Ex̂∼Pθ
[D(x̂)] (3.24)

A better solution to keeping the Lipschitz continuity was proposed by Gulrajani et. al. in [Gul+17].
They suggested penalizing the gradient by adding a regularization term to the loss function as seen
in equation 3.25. Here the λ is a strength/regulating term (set to ten in the paper). || ▽x̂ D(x̂)|| is
the gradient of the discriminator of the sample x̂. x̂ is sampled from a implicit distribution Px̂ that
represents the straight line between sampled points in the true and synthetic distribution Pr and Pθ.
In other words, an interpolated sample where a random percentage ϵ ≤ 1 of the true data and ϵ − 1 of
the fake is combined and gone through the discriminator.

L = Ex∼Pr
[D(x)] − Ex̂∼Pθ

[D(x̂)] + λEx̂∼Px̂
[(|| ▽x̂ D(x̂)||2 − 1)2] (3.25)

3.4.3 uTSGAN
The uTSGAN architecture was proposed by Smith et al. in [SS21]. It was a continuation of the authors’
previously proposed network for time series generation TSGAN [SS20]. The TSGAN network utilizes
two WGAN-GP networks WGANx and WGANy as seen in figure 3.19.

Figure 3.19: The architecture of the uTSGAN.

A random latent vector z, sampled from a Gaussian normal distribution, is created and send through
generatorX. Here the one-dimensional vector is upscaled using transposed convolutional layers into
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a spectrogram. The true time series is transformed into a spectrogram using a short-time Fourier
transform as described in section 3.1.1. DiscriminatorX is then receiving samples of the generated
spectrograms and the true spectrograms. This part of the network is not conditioned on the label.
The network, therefore, does not know for what class it should produce a spectrogram. The fake
spectrograms are then used as the input for generatorY. Here the input spectrograms are conditioned
on the class that the spectrogram was created from. This forces the generatorY to generate time series
samples that share the same characteristics as the time series from that class. GeneratorY encodes the
two-dimensional spectrograms into a one-dimensional time series. The authors argue that this method
utilizes the characteristics of convolutional layers first discovered in image processing:

It’s a known fact that convolutional layers in a deep network become bias to texture-based features in
an image which we hope to exploit with the fluctuations of the frequencies in the spectrograms creating
sharp textures, key peak frequencies, and smooth textures in others [SS20].

DiscriminatorY now receives input from both the generated time series and the true time series. In
the paper Conditional GAN for timeseries generation [SS20] the two GANs are trained in sequel with
two independent loss functions based on the work done by gulrajani et al. [Gul+17] described in section
3.4.2:

Lx = Ex∼Pr
[Dx(x)] − Ex∼Pθ

[Dx(x)] + λEx̂∼Px̂
[(|| ▽x̂ D(x̂)||2 − 1)2] (3.26)

Ly = Ex∼Pr
[Dy(x)] − Ex∼Pθ

[Dy(Gx(Gy(x)))] + λEŷ∼Pŷ
[(|| ▽ŷ D(ŷ)||2 − 1)2] (3.27)

Note here that the only difference between the two loss functions is that the second loss function Ly

is dependent on the output from the first and second generator. This however results in slow training
times as the generatorX needs to complete a full iteration before the GeneratorY can start its training.
This problem was however solved in [SS21] where the two loss functions, seen in equation 3.26 and 3.27,
were combined into a unified loss function (hence the name uTSGAN). The resulting equation 3.28 is
a simple average of the two previous loss functions. This allows the discriminators to train in parallel
resulting in faster training.

L = Lx + Ly

2
(3.28)

3.5 Evaluation Metrics

3.5.1 Evaluation Metrics for Classification Models
To evaluate the performance of the different classification models, four primary metrics are used: accu-
racy, precision, recall, and f1-score [Aga21].

3.5.1.1 Accuracy

The accuracy metric is the most straightforward and easy to understand of the proposed metrics. It is
simply the proportion of correctly classified samples to the total number of samples:

Accuracy = TP + TN

TP + TN + FP + FN
(3.29)

One disadvantage with the accuracy metric is however that a model trained on a very unbalanced
datasets can easily be misleading. If 90% of the samples in the data set eg. belongs to one class the
model will achieve a 90% accuracy by only predicting that one class. This metric therefore needs to be
combined with others that takes this into consideration.
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3.5.1.2 Precision

The precision metric tells the proposition of the predicted positives that actually are positive. It is
possible to see from the equation below that if no false positives are registered, the precision would be
1.

Precision = TP

TP + FP
(3.30)

3.5.1.3 Recall

Recall tells something about the proportion of actual positives that are predicted correctly. In the
equation below it can be seen that if there are no false negatives the recall is 1.

Recall = TP

TP + FN
(3.31)

3.5.1.4 F1-score

The f1-score combines the precision and recall metrics as follows:

f1-score = 2 Precision · Recall

Precision + Recall
(3.32)

The f1-score ensures the balance between the precision and recall as if either one of the metrics is
low the f1-score is low. In more manageable terms the f1-score is a way to ensure that the model is
precise but also good at getting a lot of true positives.

3.5.1.5 Micro- and Macro Average

When working with multi-class problems it is not possible to use the just described metrics directly. So
either the micro- or macro average must be calculated. The micro average is where the true positives,
true negatives, false positives, and false negatives are summed across the classes before calculating the
precision, recall, and f1-score. For the macro, however, the precision, recall, and f1-score are calculated
for each class, and then the average of each of the metrics are taken. The micro average weights every
data instance equally, where the macro average weights every class equally. Therefore macro average is
generally preferred for imbalanced datasets.

3.5.2 Evaluation Metrics for Generative Models
When evaluating a generative adversarial network, which is an unsupervised model, it is not possible
to use the earlier described metrics. The goal for the GAN is to create synthetic data that is similar
to the real. It is therefore in the interest to measure the similarity between the synthetic data and the
real data.

3.5.2.1 Dynamic Time Warping - DTW

One method to calculate the similarity between time series is the dynamic time warping method, also
referred to as DTW. DTW works by calculating the euclidean distance between two time series, but
it allows to use the distance between data points that are at different timestamps, but still with the
constraint that data points only can be compared sequentially. This is illustrated in figure 3.20 where
it can be seen in the right plot how the DTW allows using distances that ”warps” in time compared to
the simple euclidean distance.
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Figure 3.20: Example of euclidean distance versus DTW distance[Xan11].

For instance to calculate the DTW distance between the two time series in figure 3.21, then it is
needed to calculate the cost matrix between the two time series. It can be done with the formula in
equation 3.33 [Mis20]:

M(i, j) = |X(i) − Y (j)| + min(M(i − 1, j − 1), M(i, j − 1), M(i − 1, j)) (3.33)

Here M is the cost matrix and X and Y are the two time series. If this equation is used for the time
series from figure 3.21, then it would produce the cost matrix in table 3.1.

Figure 3.21: Two times series examples of different length that should be matched with DTW. In the
right plot the DTW matching can be seen in black.

Table 3.1 also shows the shortest path from corner to corner, which indicates the points that form
the shortest distance between the two time series. So in this case the path, π, would be equal to
[(0, 0), (1, 0), (2, 1), (2, 3), (3, 4), (4, 5), (5, 6)].
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0 1 3 6 2 1 0
0 0 1 4 10 12 13 13
3 3 2 1 4 5 7 10
6 9 7 4 1 5 10 13
1 10 7 6 6 2 2 3
1 11 7 8 11 3 2 3
2 13 8 8 12 3 3 4

Table 3.1: Cost matrix for the two time series from figure 3.21. Time series 1 is in the top row and
time series 2 is in the leftmost column.

So to calculate the actual distance between the two time series, the formula in equation 3.34 is used,
where X and Y are the two time series and π is the path, which is the shortest path and also highlighted
in table 3.1 [tsl17].

DTW (X, Y ) =
√ ∑

(i,j)∈π

(Xi − Yj)2 (3.34)

So for this example the actual distance is equal to:

DTW (X, Y ) =
∑

(0, 1, 0, 0, 1, 0, 4) = 2.45 (3.35)

This means that the distance between the two time series is 2.45. So, a smaller distance is equal to
a more similar time series, hence a small DTW distance indicates that a GAN is good at generating
synthetic data.

As the synthetic data will be used for improving a model by increasing the training data and
balancing the dataset, then a GAN that produces synthetic data with a DTW distance of 0 would be
redundant. Therefore the real value of the synthetic data generated by a GAN can only be measured
by the delta in the performance of a model trained with the original- and synthetic data.

The different theories used throughout the thesis have now been presented. The theories can roughly
be divided into the classification algorithms, the generative adversarial networks and the evaluation
metrics.



CHAPTER4
Design and

Implementation
This coming chapter will cover the design and implementation of the solution for the problem defined
in section 1.2. It will start by uncovering the use cases that it should support and see which steps
are necessary to support these in the best possible way. The design will be done in the context of an
operational setting, meaning that it is designed and implemented such that it can be used in operation.
It will be described how the steps are designed and implemented and then present the design and
implementation of the different classification models as well as the generative model.

4.1 Complete System Overview
The complete solution should support two elementary things, namely training the model and making
predictions with the model. To support those two cases a pipeline has to be designed which should be
able to collect some data, preprocess it, and then either train a model on it or make a prediction for
the data.

Figure 4.1: The high level pipeline that is needed to support the training of a model and also use it
to make predictions.

As seen from figure 4.1 there should be some kind of event that triggers the pipeline. This event
could be a technician who tells the system that he has experienced some odd behaviour or it could be
the system itself that has detected an anomaly in the sensor readings as described in chapter 2. When
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the pipeline gets triggered it should get the sensor data from around the stated time for the given
location. It should then preprocess the data such that it is consumable for the classification model.
The model should then make a fault prediction by outputting the probabilities for the different known
faults. The pipeline could also be triggered to retrain when new data and/or faults are registered.

4.2 Pipeline

4.2.1 Pipeline Design
As seen from figure 4.1, the full pipeline consists of three steps, where each step is another pipeline
itself. This means that the pipeline should be able to support nested pipelines. It can also be seen that
the pipeline should support multiple steps, where it will send the output data from one step into the
next one. Finally, the pipeline should also be able to support a step that includes a classification model,
which should be able to either be trained on the input data or make a prediction on the input data. To
sum up, the pipeline should be able to support the following operations:

• Fit

• Transform

• Predict

• Save

• Load

fit has the purpose of fitting the pipeline to the input dataset, which is equivalent to fitting each step
in the pipeline. The transform method serves the purpose of transforming the input data based on the
fitted pipeline. This split of fitting and transforming is necessary to be able to reuse the statistics of the
train data to transform the validation data. This could e.g. be normalizing the validation data based
on the mean and standard deviation of the training data. The predict operation, as the name implies,
will make it possible to make a prediction based on the input data which will output the probability
distribution of the different faults. The save operation can then save the calculated statistics and the
parameters of the classification model derived in the fit operation, such that it can be loaded again with
the load operation, without having to refit the pipeline.

A technical design that supports these needs, are presented in the UML diagram in figure 4.2. It
can be seen that the Pipeline object contains the five methods along with the attribute, steps. The
steps attribute is the list that holds all the pipeline steps that exist in the pipeline in sequential order.
It can be seen from the UML diagram that the steps can also include a whole new pipeline. The save
and load methods will call the save and load methods of the steps, but it will also make sure the files
are saved and loaded in a folder for the particular Pipeline object.
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Figure 4.2: The UML diagram of pipeline and the steps in the pipeline.

From figure 4.2 it can also be seen there can exist three types of PipelineStep, namely a Pipeline-
Transformer, PipelineDLModel, and a PipelineMLModel. The fundamental difference between the ob-
jects is that the PipelineTransformer should implement a transform method, while the PipelineMod-
els both should implement a predict method. The difference between the PipelineDLModel and the
PipelineMLModel is the fact that a deep learning model uses a criterion and an optimizer to train the
model, which the methods of the object must accommodate for. The PipelineModels also include a his-
tory attribute, which is used to store the performance of the model, such that it can be analysed after
training. The ability to handle both traditional machine learning models and deep learning models are
part of the reason why the pipeline system was implemented. This ensures flexibility to deploy different
models in an operational context. One could argue that there is no difference between the transform
and predict methods except the naming, but this provides a better understanding of what should go
into the different methods in the implementations [Bui+13].

4.2.2 Pipeline Implementation
The implementation of this design follows the UML diagram in figure 4.2, where the main elements will
be covered in the code listings in this section.

The Pipeline class has a constructor which among others sets the steps and step_names attributes.
These attributes are set with the steps parameter in the constructor, which is given by a list of tuples,
each consisting of a name for the step and the PipelineStep itself to follow the same convention as the
Scikit-learn Pipeline [Bui+13]. This parameter gets unzipped into two different attributes, namely one
for the names and one for the steps themselves. The Pipeline class also contains the transform method,
which can be seen in listing 4.1.

1 def transform(self, X, y):
2 for step in self.steps[:-1]:
3 X = step.transform(X, y)
4

5 last_step = self.steps[-1]
6 if isinstance(last_step, (Pipeline, PipelineTransformer)):
7 X = last_step.transform(X, y)
8
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9 return X

Listing 4.1: The transform method of the Pipeline class.

As the code in 4.1 shows, the transform method of the Pipeline class starts by calling the transform
method for all the steps in the pipeline, except for the last step. For each of the steps, it overrides the X
variable with the return value of the transformation of each step. This is done so each step transforms
based on the output from the previous step. It can furthermore be seen that a transformation also will
be done for the last step in the pipeline if the step is of type Pipeline or PipelineTransformer, otherwise,
it will just return the transformed variable.

The predict method of the Pipeline class follows the exact same structure as the transform method,
except that it will call predict on the last step, as it is assumed the last step of the pipeline is of type
PipelineModel.

The last method within the Pipeline class is the fit method. It follows the same principles as the
transform method but with some additions to it to allow it to pass a validation dataset along the
pipeline. This is so the performance of the Pipeline can be measured on validation data and make it
possible to determine an early stopping criteria for the PipelineDLModel. The fit method of the Pipeline
class can be seen in listing 4.2:

1 def fit(self, X_train, y_train, validation_set=None):
2

3 if validation_set:
4 X_validation, y_validation = validation_set
5

6 for step in self.steps:
7 if isinstance(step, PipelineTransformer):
8 step.fit(X_train, y_train)
9 X_train, y_train = step.transform(X_train, y_train)

10 if not isinstance(step, Synthesizer):
11 X_validation, y_validation = step.transform(X_validation, y_validation)
12

13 elif isinstance(step, Pipeline):
14 X_train, y_train, X_validation, y_validation = step.fit(X_train, y_train,

validation_set=(X_validation, y_validation))
15

16 elif isinstance(step, (PipelineDLModel, PipelineMLModel)):
17 step.fit(X_train, y_train, validation_set=(X_validation, y_validation))
18

19 return X_train, y_train, X_validation, y_validation
20

21 else:
22 for step in self.steps:
23 if isinstance(step, PipelineTransformer):
24 step.fit(X_train, y_train)
25 X_train, y_train = step.transform(X_train, y_train)
26

27 elif isinstance(step, Pipeline):
28 X_train, y_train = step.fit(X_train, y_train)
29

30 elif isinstance(step, (PipelineDLModel, PipelineMLModel)):
31 step.fit(X_train, y_train)
32

33 return X_train, y_train

Listing 4.2: The fit method of the Pipeline class.

As listing 4.2 shows, the method looks more comprehensive. The method is essentially divided into
two parts, where one part is where the validation dataset has been set in the parameter, and one part
where it has not. The part where the validation dataset is not set begins on line 21. Here it can be seen
that for each of the steps in the pipeline it will call the fit method of the step. If the step is of type
PipelineTransformer it will also call transform afterwards and overwrite the variables with the outcome
of the transformation. This is done to make sure that the next step in the pipeline will fit according
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to the expected input, which is the transformed input from the step. The reason that it will not call
transform if the step is of type Pipeline is that it is done implicitly in the fit method of the pipeline.

The part of the method that handles the case where the validation dataset is passed goes from line 3
to 19. Here it follows the exact same pattern, but it additionally passes the validation data through the
transformation if the step is of type PipelineTransformer. Otherwise, it just passes the validation data
further into the nested pipelines and the PipelineModel. Furthermore, it can be seen on line 10-11 that
it will only transform the validation dataset if the step is not of type Synthesizer. The Synthesizer is a
preprocessing step, which will be explained in section 4.2.3. But the intention of the Synthesizer is to
concatenate the input data with synthetic data that will be generated based on a specified generative
network. The validation dataset should therefore not pass through that transformation. The full
implementation of the Pipeline class can be found in the Appendix in listing A.1.

4.2.3 Pipeline Steps
The PipelineStep class is then implemented to support the methods of the Pipeline class and follow
the structure defined in section 4.2.1. The class contains a constructor, which just serves the purpose
of setting the name of the object. Furthermore, it contains the set_parameter method, which can be
used by the GridSearch class to set an attribute of the PipelineStep. This will be explained in a future
section. The PipelineStep class also contains methods for saving and loading, where it just saves or
loads all the public variables of the object in a pickle file. The whole implementation of the PipelineStep
class can be found in the Appendix in listing A.2.

The PipelineMLModel is a bit more comprehensive as it must support the fitting and performance
measuring of the machine learning model. The constructor of the object just sets the following at-
tributes:

• __model

• history

• best_model

• best_score

The __model is the machine learning model itself. The double underscore just indicates that it is
a private attribute and it is therefore not saved with the save method of the superclass, as it should be
saved in another fashion. The history attribute is a dictionary that holds all the performance metrics.
The best_model holds a copy of the model, and the validation f1-score is stored in the best_score
attribute. The reason that the class has a history, a best_model, and a best_score attribute, is that
it follows the same convention as the PipelineDLModel which will be described shortly. Besides the
constructor, the class contains the following method for calculating the metrics:

1 def calculate_metrics(self, y_pred, y_true):
2 report = sklearn.metrics.classification_report(y_true, y_pred, output_dict=True)
3 report = report.get('macro avg', report)
4 accuracy = sklearn.metrics.accuracy_score(y_true, y_pred)
5

6 return accuracy, report['precision'], report['recall'], report['f1-score']

Listing 4.3: The calculate_metrics method of the PipelineMLModel class.

The calculate_metrics method showed in listing 4.3 takes in two one-dimensional arrays as parame-
ters, where one contains the predicted class indices and the other the true class indices, which it uses
to calculate the accuracy, precision, recall, and f1-score. As it can be seen from line 3 in the listing the
macro average is calculated for a multi-classification problem. This method for calculating the metrics
is used in the fit method of the PipelineMLModel class, to calculate the performance of the model after
training. The skeleton for the fit method can be seen in listing 4.4 below:



4.2 Pipeline 41

1 def fit(self, X_train, y_train, validation_set=None):
2 # Fit
3 self.__model.fit(X_train, y_train)
4

5 # Calculate metrics for training set
6 y_hat_train = self.__model.predict(X_train)
7 accuracy_train, precision_train, recall_train, f1_train = self.calculate_metrics(

y_hat_train, y_train)
8

9 # Set history values for training metrics
10 ...
11

12 if validation_set:
13 X_validation, y_validation = validation_set
14

15 # Predict with validation set and set history with f1 score
16 y_hat_validation = self.__model.predict(X_validation)
17 accuracy_validation , precision_validation , recall_validation, f1_validation = self.

calculate_metrics(y_hat_validation, y_validation)
18

19 # Set history values for validation metrics
20 ...
21

22 self.best_score = f1_validation

Listing 4.4: The fit method of the PipelineMLModel class.

As line 3 in listing 4.4 shows, the fit methods starts off by calling the regular fit method for the
provided machine learning model. On line 6-7 it then uses the fitted model to make a prediction on the
training dataset and then calculate the performance metrics for it. If a validation dataset is provided
as a parameter in the fit method, then it will do the exact same thing for the validation dataset, as seen
on line 16-17. On line 22 it sets the best score of the model to the f1-score for the validation dataset.

The last important method of the PipelineMLModel class is the predict method, which just calls
the predict_proba method of the machine learning model. This returns a probability distribution for
each of the possible classes, instead of just the index of the class with the highest probability. The full
implementation of the PiplineMLModel class can be found in appendix A.3.

The structure of PipelineDLModel is similar to the structure of the PipelineMLModel but with some
additions to it. Firstly, it contains the following additional attributes:

• __optimizer

• __criterion

• __epochs

• best_epoch

• batch_size

• shuffle

• patience

The __optimizer is used to hold the PyTorch optimizer that will be used to optimize the parameters
of the model. The optimizer will optimize based on the loss calculated by the __criterion attribute,
which should be a PyTorch loss function. The __epochs attribute denotes the maximum number of
epochs the model should be trained, where the training can be terminated earlier if the early stopping
criteria is met. The early stopping criteria is met when the model has not improved its performance
for more than a certain amount of epoch, which is specified by the patience attribute. This is why the
best_epoch attribute is needed, as it will hold the epoch of when the best model was achieved. The
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other part that is fundamentally different is the fit method, as it implements the whole training loop.
The skeleton of the fit method for the PipelineDLModel can be seen in listing 4.5:

1 def fit(self, X_train, y_train, validation_set=None):
2

3 # Create the dataset and dataloader
4 dataset = PytorchTimeSeriesDataset(X_train, y_train)
5 dataloader = DataLoader(dataset, batch_size=self.batch_size, shuffle=self.shuffle)
6

7 if validation_set:
8 X_validation, y_validation = validation_set
9

10 # Run training loop
11 for epoch in range(self.current_epoch, self.__epochs):
12 # Set running performance metrics
13 ...
14

15 for i, (input, labels) in enumerate(dataloader):
16 # Zero the parameter gradients
17 self.__optimizer.zero_grad()
18 # Forward
19 outputs = self.__model(inputs)
20 # Calculate loss
21 loss = self.__criterion(outputs, labels.argmax(dim=1).long())
22 # Backward + optimize
23 loss.backward()
24 self.__optimizer.step()
25 # Calculate metrics and add to running metrics
26 accuracy, precision, recall, f1 = self.calculate_metrics(outputs, labels)
27 ...
28

29 # Average the metrics overall batches and append values to history
30 ...
31

32 # Also calculate for validation set
33 if validation_set:
34 with torch.no_grad():
35 # Calculate validation metrics and add to history
36 y_validation_pred = self.__model(X_validation)
37 loss_validation = self.__criterion(y_validation_pred, y_validation.argmax(dim

=1).long())
38 accuracy_validation , precision_validation , recall_validation, f1_validation =

self.calculate_metrics(y_validation_pred, y_validation)
39 ...
40

41 # If validation score is better than best, save that model
42 if f1_validation > self.best_score:
43 self.best_epoch = epoch
44 self.best_score = f1_validation
45

46 # Early stopping criteria met. Break training loop
47 elif epoch > self.best_epoch + self.patience:
48 break

Listing 4.5: The fit method of the PipelineDLModel class.

It can be seen from line 4-5 in listing 4.5 that the fit method starts by creating a dataloader that
uses the batch size set for the PipelineDLModel as well as shuffles the dataset if set. On line 7-8 it
then unpacks the validation dataset into separate variables for the input and labels. On line 11 the
training loop starts, which will run for as many epochs as specified. On line 13 the method initializes
the running performance metrics to 0 for the training dataset which are used to calculate the average
metrics for all the batches in the training data at each epoch. On line 15-27 the training of each batch
is done. It starts by making sure the gradients of the optimizer are set to zero. This is to make sure
that the optimizer only will take a step according to the gradients of the current batch. Now the input
training data is fed forward through the network, and the result of the network is kept in the variable
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outputs. Now the loss is calculated between the predicted output and the true labels with the specified
loss function as seen on line 21. On line 23 it then backpropagates to compute the gradients for each
of the parameters in the model with respect to the loss, such that the optimizer can take a step in
the direction that minimizes the loss for the current batch, which can be seen on line 24. On line 26,
it then calculates the performance metrics for the current training batch, which will be added to the
running performance metrics. After the epoch, the average training performance metrics are calculated
and added to the history dictionary.

On line 34 it will then also feed the validation input through the network and calculate the perfor-
mance metrics for the validation dataset. Here it is important that it gets done without calculating the
gradients as this would lead to the network also being trained on the validation dataset and thereby
introduce a bias in the validation performance metrics, hence line 37 in the listing. On line 42 the
method checks if the achieved validation f1-score is better than the current best score. If it is, then it
will set the best_epoch and best_score attributes to the new values and save the model. If the model
does not perform better, then it will check if it has not performed better for more than a certain amount
of epochs, specified by the patience attribute. The full implementation of the PipelineDLModel can be
found in appendix A.4.

4.2.4 Grid Search
To ensure that a model reaches a close to optimal minima in its hyperparameter loss landscape a grid
search have been created. Here the best combination of hyperparameter values are selected experimen-
tally by testing the performance of a model with different ranges of values. This is illustrated in figure
4.3.

Figure 4.3: A visual illustration of a grid search of selected values of feature A and feature B with
their underlying loss landscape.

Grid search is a slow optimization method compared to others, as it tries out all possible combi-
nations. But on the other hand it is possible to control the exact hyperparameters that it should use
and it is simple to implement. While hyperparameter optimization tools like Optuna [Aki+19] are
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available, grid search serves the purpose to obtain benchmark results to compare results of the different
classification models.

Grid search not only helps to find the close to optimal hyperparameters, but it also makes it possible
to include the search of them in a continuous learning setup, where the pipeline should be retrained
regularly.

The grid search should be implemented in such a way, that it will by itself discover all possible
combinations of hyperparameters, given a dictionary where the name of the hyperparameters are the
keys, and the values are lists containing the values the particular hyperparameter can be. An example
of such a dictionary can be seen in listing 4.6. Here the characters before the first double underscores
refer to the name of the pipeline step, and the rest of the characters refer to the name of attribute it
should set for the given step.

1 params = {
2 'resampler__length' : [144, 100, 50],
3 'scaler__method' : ['standard', 'mean'],
4 'IT__batch_size' : [128, 64],
5 'IT___PipelineDLModel__epochs' : [500],
6 'IT__patience' : [50]
7 }

Listing 4.6: An example of a dictionary used by the gridsearch class.

From the dictionary seen in listing 4.6, the GridSearch class should try out all 12 combinations of
the hyperparameters. It does that by taking the product of the parameters and provide them as a list
of dictionaries, each containing the hyperparameter names and their specific value for the given setting.
This list of hyperparameter settings is referred to as parameter_settings. The GridSearch class should
also contain a fit method. The skeleton for this method can be seen in listing 4.7:

1 def fit(self, X, y, validation_set):
2

3 for i, parameters in enumerate(self.parameter_settings):
4

5 pipeline = copy.deepcopy(self.pipeline_template)
6

7 # Set parameters of pipeline
8 for key, value in parameters.items():
9 pipeline.set_parameter(key, value)

10

11 # Fit pipeline
12 pipeline.fit(X, y, validation_set)
13 pipeline.save()
14

15 # Save pipeline as best, if better than best
16 if self.best_pipeline:
17 if pipeline.steps[-1].best_score > self.best_pipeline.steps[-1].best_score:
18 self.best_pipeline = pipeline
19 else:
20 self.best_pipeline = pipeline

Listing 4.7: An example of a dictionary used by the gridsearch class.

So basically what the fit method of the GridSearch class does, is that it loops through all the param-
eter settings, create a copy of the pipeline that the class was created with, sets the hyperparameters of
the model, and then fits the pipeline for the input data. As it can be seen on line 16-20 in listing 4.7,
it will also keep track of the best pipeline.

4.3 InceptionTime
One of the classification models that will be used is the InceptionTime algorithm. The algorithm
is implemented using the PyTorch library [Pas+19]. As described in section 3.3.1 the InceptionTime
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network is build-up of inception blocks which themselves are build-up of inception modules. The authors
of the InceptionTime algorithm suggest using three modules per block[Ism+19]. The init method of
the InceptionTime block can be seen in listing 4.8. Here it can be seen how the different layers in a
module are defined. Here a layer is defined for each of the boxes in figure 3.13, which can be found on
line 7, 8, 10, 11, 12, and 14, except for the concatenate box. It can be seen that each box is created
three times in a list, as each block consists of three modules. This is because the same type of layers
should be used in each module.

1 def __init__(self, in_channels, out_channels=32, dropout=0.0):
2 super(InceptionBlock, self).__init__()
3 self.activation = [nn.ReLU() for _ in range(3)]
4 self.dropout = [nn.Dropout(dropout) for _ in range(3)]
5 self.batchnorm = [nn.BatchNorm1d(out_channels*4) for _ in range(3)]
6

7 self.bottleneck = [nn.Conv1d(in_channels=in_channels, out_channels=out_channels,
kernel_size=1, stride=1, padding='same') for _ in range(3)] # First bottleneck

8 self.max_pool_layer = [nn.MaxPool1d(kernel_size=3, stride=1, padding=1) for _ in range(3)
] # Maxpool

9

10 self.layer_10 = [nn.Conv1d(in_channels=out_channels, out_channels=out_channels,
kernel_size=10, stride=1, padding='same', padding_mode='replicate') for _ in range(3)
] #10

11 self.layer_20 = [nn.Conv1d(in_channels=out_channels, out_channels=out_channels,
kernel_size=20, stride=1, padding='same', padding_mode='replicate') for _ in range(3)
] #20

12 self.layer_40 = [nn.Conv1d(in_channels=out_channels, out_channels=out_channels,
kernel_size=40, stride=1, padding='same', padding_mode='replicate') for _ in range(3)
] #40

13

14 self.bottleneck_after_max_pool = [nn.Conv1d(in_channels=in_channels, out_channels=
out_channels, kernel_size=1, stride=1, padding='same') for _ in range(3)] # Second
bottleneck

Listing 4.8: The init method in the InceptionTime block.

The actual definition of how the data should flow through the block is defined in the forward method
of the class. This method can be seen in listing 4.9 where the input x flows according to the arrows
from figure 3.13. Here x will flow through the bottleneck layer and the maxpool layer, as seen on line
3 and 4. The output of the maxpool layer will then flow through the other bottleneck layer on line 10.
The output of the first bottleneck layer will then flow through the three convolutional layers in parallel,
as seen on line 6-8. Finally, the output of the three convolutional layers and the second bottleneck layer
will be concatenated followed by a batchnorm layer and a dropout layer as seen on line 13-15. This
output will then be fed through the exact same type of layers two more times and then return. It should
be noted that each of the layers are acceded with the index, i, to get the layer for the correct module.

1 def forward(self, x):
2 for i in range(3):
3 x_bottle_1 = self.activation[i](self.bottleneck[i](x))
4 x_max = self.max_pool_layer[i](x)
5

6 x_10 = self.activation[i](self.layer_10[i](x_bottle_1))
7 x_20 = self.activation[i](self.layer_20[i](x_bottle_1))
8 x_40 = self.activation[i](self.layer_40[i](x_bottle_1))
9

10 x_bottle_2 = self.activation[i](self.bottleneck_after_max_pool[i](x_max))
11

12 # Concatenate
13 x_return = torch.cat((x_10, x_20, x_40, x_bottle_2), 1)
14 x_return = self.batchnorm[i](x_return)
15 x = self.dropout[i](x_return)
16

17 return x
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Listing 4.9: The forward method in the InceptionTime block.

The InceptionTime blocks then have to be put sequentially with residual connections between each
block, as illustrated in figure 3.14. This implementation can be seen in listing 4.10. The residual
connections created on line 12 and 15 simply contains a convolutional layer and a batchnorm layer.
The for loop on line 10 adds as many residual connections and blocks as needed and append them to a
module list. In all but the first module of the first block, the number of in_channels is the result of the
four different paths in the preceding module. On line 18 the last linear layer is defined, which outputs
as many features as there are classes it should predict. The input, x, then flows through each of the
blocks and each of the residual connections. The output of the block is then added to the output of the
residual connection, as seen on line 23-28. On line 30 the global average pooling is performed where
the mean across the time dimension is calculated. This is followed by the linear layer on line 31 that
reduces the number of features down to as many classes there exists. This is then followed by a softmax
on line 33 to provide the predicted probability of that instance belonging to the different classes. It can
furthermore be seen that it is possible to specify the depth of the InceptionTime as a hyperparameter
by specifying the number of blocks it should use.

1 class InceptionTime(nn.Module):
2

3 def __init__(self, in_channels, num_pred_classes, out_channels=32, num_blocks=2, dropout
=0.0):

4 super(InceptionTime, self).__init__()
5 self.activation = nn.ReLU()
6 self.num_pred_classes = num_pred_classes
7 self.num_blocks = num_blocks
8

9 self.layers = nn.ModuleList()
10 for block in range(self.num_blocks):
11 if block == 0:
12 self.layers.append(residual(in_channels, out_channels*4, self.activation))
13 self.layers.append(InceptionBlock(in_channels, out_channels, dropout=dropout)

)
14 else:
15 self.layers.append(residual(out_channels*4, out_channels*4, self.activation))
16 self.layers.append(InceptionBlock(out_channels*4, out_channels, dropout=

dropout))
17

18 self.linear = nn.Linear(in_features=out_channels*4, out_features=self.
num_pred_classes)

19

20

21 def forward(self, x):
22 index_control = 0
23 for blocks in range(self.num_blocks):
24 x_res = self.layers[index_control](x)
25 x_block = self.layers[index_control+1](x)
26 x = x_res + x_block
27

28 index_control += 2
29

30 x = x.mean(2)
31 x = self.linear(x)
32

33 x = torch.softmax(x, dim=1)
34

35 return x

Listing 4.10: The full InceptionTime network that utilizes the InceptionBlock class.
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4.4 ROCKET and MiniROCKET
ROCKET and MiniROCKET are both implemented as a PipelineTransformer class. This can be seen
in listing 4.11, where the implementation of ROCKET extends the PipelineTransformer class. It by
default gets initialized with 10.000 kernels, but this can be tuned as a hyper parameter.

1 class RocketTransformer(PipelineTransformer):
2

3 def __init__(self, num_kernels=10000):
4 super().__init__(self.__class__.__name__)
5 self.rocket = Rocket
6 self.num_kernels = num_kernels
7

8 def fit(self, X, y):
9 self.rocket = self.rocket(self.num_kernels)

10 self.rocket.fit(X)
11

12 def transform(self, X, y=None):
13 if y is not None:
14 return self.rocket.transform(X), y.argmax(axis=1)
15 else:
16 return self.rocket.transform(X), None

Listing 4.11: The implementation of the ROCKET transformer.

The ROCKET transformation is implemented using the Rocket class from sktime [Lön+21]. It can
furthermore be seen that the fit method just calls the fit method of the Rocket object. Likewise in
the transform method, it just calls the transform method of the Rocket object. The transform method
however also transforms the labels from a one-hot encoded vector to a vector of class labels, if the labels
are provided.

The implementation of the MiniROCKET looks very similar as it is also implemented using sktime
[Lön+21]. The only difference is that it is not a possibility to change the number of kernels as they are
already specified, as described in section 3.3.2.

4.5 uTSGAN
In the following section the implementation of the uTSGAN architecture is explained. In section 5.2 the
experimental setup is explained to test the proposed GAN architectures. The following implementation
is of the best performing GAN. The variation of the GANs will be explain in section 5.2.

As described in section 3.4.3, the uTSGAN consists of two Wasserstein GANs, WGAN X and
WGAN Y, each consisting of a generator and discriminator, referred to as generatorX, generatorY,
discriminatorX, and discriminatorY.

GeneratorX is a convolutional network to generate synthetic spectrograms. It consists of transposed
convolutional blocks to go from a Zx1x1 shape to a Cx128x128 shape, where Z is the latent size and
C is the number of time series it should produce a spectrogram for. The implementation of the init
method of generatorX can be seen in listing 4.12:

1 def __init__(self, latent_size, channels):
2 super(GeneratorX, self).__init__()
3

4 # Input shape (B, L, 1, 1)
5 self.net = nn.Sequential(
6 self._block(latent_size, channels*128, kernel_size=4, stride=1, padding=0), # 4x4
7 self._block(channels*128, channels*64, kernel_size=4, stride=2, padding=1), # 8x8
8 self._block(channels*64, channels*32, kernel_size=4, stride=2, padding=1), # 16x16
9 self._block(channels*32, channels*16, kernel_size=4, stride=2, padding=1), # 32x32

10 self._block(channels*16, channels*8, kernel_size=4, stride=2, padding=1), # 64x64
11 nn.ConvTranspose2d(channels*8, channels, kernel_size=4, stride=2, padding=1), # 128

x128
12 nn.Tanh(),
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13 )

Listing 4.12: The implementation of the init method for generatorX.

Each self._block in listing 4.12 is a transposed convolution followed by batchnorm and a leaky relu
activation. It can be seen that the first block creates a 4x4 spectrogram, and from there doubles in
size for each block until it is of size 64x64. The last transposed convolution seen on line 11, is the
same transposed convolution that is in each block but without the batchnorm and leaky relu. On line
12 it can be seen that the tanh activation is used to get all values between -1 and 1. It is therefore
important in the training of the uTSGAN to normalize the spectrogram values to be between -1 and 1.
The forward method of generatorX just passes the input through the self.net defined in the init method.
The full implementation of generatorX can be found in appendix A.5.

DiscriminatorX, which should learn to differentiate between true spectrograms and the synthetic
spectrograms generated by generatorX looks similar to generatorX. It is basically just a mirror of
generatorX, so it uses normal convolutional layers to get the size of the input spectrogram down to a
size of 1x1. The init method of discriminatorX can be seen in listing 4.13:

1 def __init__(self, channels):
2 super(DiscriminatorX, self).__init__()
3

4 # Input shape (B, C, 128, 128)
5 self.net = nn.Sequential(
6 self._block(channels, channels*2, kernel_size=4, stride=2, padding=1), # 64x64
7 self._block(channels*2,channels*4, kernel_size=4, stride=2, padding=1), # 32x32
8 self._block(channels*4,channels*8, kernel_size=4, stride=2, padding=1), # 16x16
9 self._block(channels*8,channels*16, kernel_size=4, stride=2, padding=1), # 8x8

10 self._block(channels*16,channels*32, kernel_size=4, stride=2, padding=1), # 4x4
11 nn.Conv2d(channels*32, 1, kernel_size=4, stride=2, padding=0), # 1x1
12 )

Listing 4.13: The implementation of the init method for discriminatorX.

From listing 4.13, the discriminatorX looks just like generatorX. The only difference was that the
blocks use normal convolutions instead of transposed convolutions, and in the end, it uses just a con-
volution without any activation function. This makes it able to output a value that is not restricted
and is a direct indication of how sure the discriminator is that the input is a true instance. It can
also be seen that the discriminator expects the input spectrograms to be of shape 128x128 to comply
with the synthetic generated spectrograms. The forward method of discriminatorX is again passing the
input through the self.net defined in the init method, but before it does, it adds some Gaussian noise
to the input to make it more robust towards variance. The full implementation of discriminatorX can
be found in appendix A.6.

While the generated synthetic spectrograms from generatorX are used as input to discriminatorX,
they are also used as input to generatorY. Here the spectrograms are converted into time series. As
the uTSGAN paper[SS21] did not specify how this should be implemented, it was implemented in the
attempt to mimic a learnable inverse discrete Fourier transform (IDFT) for each point in time. This
means implementing a convolution using a stride of 2x1 that ”compresses” the spectrogram along the
frequency dimension as illustrated in figure 4.4. This method is what makes the proposed method
unique as it turned out that the original uTSGAN implemented this conversion from a spectrogram to
a time series in a different manner which will be explained in section 5.2.

It is important to note here that the spectrograms generated in generatorX are not conditioned and
therefore the inverse STFT cannot be used to go from the synthetic spectrograms to synthetic time
series.
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Figure 4.4: A visual representation of how generatorY shrinks the spectrograms in the attempt to
mimic a learnable inverse DFT, and then upsample the timeseries to the correct length.
The orange arrows represent convolutional layers.

Figure 4.4 shows that it uses convolutional layers to half the frequency dimension till the spectro-
grams are shrunk down to a size of 1x128. In each of the convolutions, the amount of channels increases
by a factor of two to compensate for the information lost in the frequency dimension. This process is
essentially trying to estimate the expression ei 2π

N kn from equation 4.1 for each point in time. In the
equation, xn is the value of the time series at time n and N is the number of different frequency bins.
The reason why it is not possible to directly use the ISTFT is the fact that the spectrograms are not
conditioned and the spectrograms do therefore not directly represent a conditioned time series.

xn = 1
N

N−1∑
k=0

Xk ∗ ei 2π
N kn (4.1)

The implementation of the different parts in generatorY can be seen in listing 4.14. Here it can be
seen that the init method defines three different parts. On line 5 it creates an embedding layer, which
is the layer that should make the model take the condition into consideration. The next part that is
initialized is the network that consists of the convolution blocks that uses asymmetric stride to get the
spectrograms down to a size of 1x128. It can be seen on line 15 that the dimensionality is reduced to a
1-dimensional time series. The last part that is initialized is the network that upsamples the time series
to a length of 512. It can be seen on line 19 and 20, that it applies a convolutional layer followed by
the tanh activation before upsampling.

1 def __init__(self, embed_size, channels, num_labels):
2 super(GeneratorY, self).__init__()
3

4 self.embed_size = embed_size
5 self.embedding = nn.Embedding(num_labels, embed_size*128*128)
6

7 # Input shape: (B, channels+embed, 128, 128)
8 self.net = nn.Sequential(
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9 self._block(channels+embed_size, channels*2, kernel_size=3, stride=(2,1), padding=1),
# 64x128

10 self._block(channels*2,channels*4, kernel_size=3, stride=(2,1), padding=1), # 32x128
11 self._block(channels*4,channels*8, kernel_size=3, stride=(2,1), padding=1), # 16x128
12 self._block(channels*8,channels*16, kernel_size=3, stride=(2,1), padding=1), # 8x128
13 self._block(channels*16,channels*32, kernel_size=3, stride=(2,1), padding=1), # 4x128
14 self._block(channels*32, channels*16, kernel_size=3, stride=(2,1), padding=(0,1)), #

1x128
15 nn.Flatten(start_dim=2),
16 )
17

18 self.upnet = nn.Sequential(
19 nn.Conv1d(channels*16, channels, kernel_size=3, stride=1, padding=1, bias=False),
20 nn.Tanh(),
21 nn.Upsample(size=512, mode='linear', align_corners=False)
22 )

Listing 4.14: The implementation of the init method for generatorY.

The forward method of generatorY is a bit different from the others as it takes in the labels to
learn the condition. It can be seen from listing 4.15 that it starts by passing the labels through the
embedding layer where it is reshaped to the size of Ex128x128 and gets concatenated with the synthetic
spectrograms. Here E refers to the embed size. On line 4 and 5, it then passes that input through the
rest of the network. The full implementation of generatorY can be found in appendix A.7

1 def forward(self, X, y):
2 embedding = self.embedding(y.long()).view(y.shape[0], self.embed_size, 128, 128)
3 X = torch.cat([X, embedding], dim=1)
4 X = self.net(X)
5 X = self.upnet(X)
6 return X

Listing 4.15: The implementation of the forward method for generatorY.

The synthetic generated time series by generatorY is then processed by discriminatorY. The ar-
chitecture is almost identical to discriminatorX expect it uses 1-dimensional convolutions instead of
2-dimensional. DiscriminatorY also needs to be conditioned. This is again done by using an embedding
layer. The implementation of discriminatorY can be found in appendix A.8.

To train the uTSGAN, a quite comprehensive training loop had to be implemented, due to the four
different networks that had to be trained. The uTSGAN is implemented as a PipelineTransformer,
where the whole training process is located in the fit method. The skeleton of the implementation
of the training loop can be seen in listing 4.16. Here it goes into the training loop that will run for
the specified amount of epochs, as seen on line 4. The for loop on line 5 then iterates through each
batch, where the inputs, labels, and spectrograms of the input get extracted from the batch. On line
8 to 43 the loop that trains the discriminator is located. Here it starts by creating the latent vector,
z, which will be used to create fake spectrograms. On line 13 it then passes the true spectrograms
through discriminatorX. It then generates some synthetic spectrograms based on the latent vector, z,
with generatorX on line 15, which it also passes through discriminatorX. On line 18 to 21 it does the
same, just for generatorY and discriminatorY, where it uses the synthetic generated spectrograms from
generatorX to pass through generatorY instead of a latent vector. On line 24 to 28 it then calculates
the loss for each discriminator according to equation 3.26 and 3.27. The optimizer will try to minimize
this loss, and therefore a minus sign is put in front of the loss to ultimately maximizing the distance
between the two distributions. On line 33 the two losses get unified as in equation 3.28. Now the
gradients of the discriminators are zeroed followed by a backpropagation on line 37. Here it can be
seen that the gradient graph is retained as it should be reused for training the generators later. On line
40 a step is taken on each of the optimizers for the discriminators, to make the discriminators update
their weights. Note that the discriminator is trained for more iterations than the discriminators. This
comes from the WGAN-GP paper [Gul+17]. On line 43 and 44, the synthetic generated spectrograms
get passed through the updated discriminatorX and the loss gets calculated as the negative mean of
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the discriminator output, as the generators should learn to maximize the loss of the discriminators. On
line 47 and 49, the same thing happens, just for generatorY and discriminatorY. It will then zero the
gradients of the generators and then call backwards on both generators, as seen on line 54 and 55. Here
the graph is retained after calling backward on the loss from generatorX, as parts of the graph is reused
in the backward call on generatorY loss. Lastly, a step is taken for each of the generator optimizers to
update their weights. The full implementation of the fit method can be found in appendix A.9.

1 def fit(self, X, y):
2

3 # Run training loop
4 for epoch in range(self.__epochs):
5 for batch in dataloader:
6 inputs, labels, spectrograms = batch
7

8 for _ in range(self.discriminator_iterations):
9 # Create latent vector

10 z = torch.randn(labels.shape[0], self.__generatorX.latent_size, 1, 1)
11

12 # Feed discriminatorX with true spectrograms
13 output_discriminatorX_true = self.__discriminatorX(spectrograms).view(-1)
14 # Feed discriminatorX with fake spectrograms
15 g_X_z = self.__generatorX(z)
16 output_discriminatorX_fake = self.__discriminatorX(g_X_z).view(-1)
17 # Train discriminatorY with true time series
18 output_discriminatorY_true = self.__discriminatorY(inputs, labels).view(-1)
19 # Train discriminatorY with fake time series
20 g_Y_z = self.__generatorY(g_X_z, labels)
21 output_discriminatorY_fake = self.__discriminatorY(g_Y_z, labels).view(-1)
22

23 # Calculate loss for discriminatorX
24 GP_X = self.gradient_penalty_spectrogram(self.__discriminatorX, spectrograms,

g_X_z)
25 loss_discriminatorX = -(torch.mean(output_discriminatorX_true) - torch.mean(

output_discriminatorX_fake)) + self.lambda_penalty_x * GP_X
26 # Calculate loss for discriminatorY
27 GP_Y = self.gradient_penalty_timeseries(self.__discriminatorY, inputs, g_Y_z,

labels)
28 loss_discriminatorY = -(torch.mean(output_discriminatorY_true) - torch.mean(

output_discriminatorY_fake)) + self.lambda_penalty_y * GP_Y
29

30 # Calculate the unified loss for discriminators
31 unified_loss_discriminator = (loss_discriminatorX + loss_discriminatorY) / 2
32

33 # Zero the gradients for the discriminators
34 ...
35

36 # Backwards on discriminator
37 unified_loss_discriminator.backward(retain_graph=True)
38

39 # Optimize Discriminator
40 ...
41

42 # Calculate loss generatorX
43 genX_ = self.__discriminatorX(g_X_z)
44 loss_generatorX = -torch.mean(genX_)
45

46 # Calculate loss generatorY
47 genY_ = self.__discriminatorY(g_Y_z, labels)
48 loss_generatorY = -torch.mean(genY_)
49

50 # Zero the gradients for the generator
51 ...
52

53 # Backwards on both generators
54 loss_generatorX.backward(retain_graph=True)
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55 loss_generatorY.backward()
56

57 # Optimize generator
58 ...

Listing 4.16: The implementation of the fit method the uTSGAN.

The design and implementation of the infrastructure for fitting models and predicting failures have
now been implemented. The implemented pipeline class with associated methods and models allows
for easy tuning of hyperparameters in both the coming experiments but also for future operational
settings.



CHAPTER5
Experimental Method

The following chapter will describe the experiments performed to answer the stated research questions.
The experiments are divided into three, a GAN experiment, a simulated experiment, and a real-world
experiment. But first, the datasets used in the experiments are presented along with preliminary data
exploration.

A series of generative adversarial models (GANs) will be presented with varying complexity. They
will be investigated and their ability to create realistic time series data will be compared. The general
learnings and limitations of the GANs will also be presented. Next, an extensive experiment of different
time series classification methods is conducted on three open-source datasets. One of the datasets
will be reduced and the most promising classification models will be trained on the reduced dataset
to simulate a small data foundation. A GAN will be used to generate synthetic time series data and
thereby increase the size of the dataset again. The most promising classification models will be trained
on a combination of the true and generated data to see if the addition of synthetic data positively
benefits the classification models.

The ”real-world” experiment is based on a relevant dataset from real wind turbines. Here the most
promising classification models from the simulated experiments are used to obtain a result. The purpose
of the experiments is to investigate to what extent it is possible to differentiate the failures occurring
in a wind turbine based on its sensor values. Furthermore, to investigate if it is possible to increase the
performance of a model by doing complex data augmentation using a GAN.

5.1 Data foundation
In the following sections five different datasets will be presented. Three of them are open-source datasets
and one of them is a real-world dataset. The last dataset is a constructed one, where the underlying
functions of the time series are known.

5.1.1 Sinusoidal dataset
The constructed dataset serves the main purpose of being a simple dataset to validate if a GAN was
able to learn the underlying function of a dataset while being able to differentiate between different
conditions. The dataset that is constructed consists of four different sine waves with different amplitudes,
where one of them has a smaller frequency than the other, depending on the condition. An example of
each condition can be seen in figure 5.1:
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Figure 5.1: An example of each condition in the fictive sinusoidal dataset.

As seen from figure 5.1 there has also been added some random noise to the sine waves so the
different samples vary slightly.

5.1.2 Articulary Word Recognition - AWR
One of the open-source datasets is the Articulary Word Recognition dataset, also referred to as AWR
[J W21]. The AWR dataset is about classifying 25 differently pronounced words, where the data is
recorded from 9 sensors attached to a subjects face. Due to its large amount of classes and number
of sensors it is interesting to see how both the GAN and the classification models will perform on the
dataset. As seen from figure 5.2 the dataset is also perfectly balanced with 11 instances of each class.
With its benchmark accuracy of 99.56% [Rui+20] it is expected that the classification models in this
project will achieve good results.

Figure 5.2: The class distribution of the AWR dataset.
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The spectrograms of one example for the three first classes in the AWR dataset can be seen in figure
5.3. The spectrograms have been generated with the Hann window, a window size of 1

5 of the time
series length (144), and a hop size of one, as this seemed to provide the best resolution trade-off. These
parameters will be used when creating spectrograms for the uTSGAN model.

Figure 5.3: The spectrograms for each of the sensors(columns) for the first three classes(rows) in the
AWR dataset. The spectrograms for all the classes can be found in appendix B.1 and B.2.

To see the distribution of the different sensors for the different classes the plot in figure 5.4 has been
created. Here all the normalized instances for each of the sensors have been plotted for the first three
classes.

Figure 5.4: All the time series data plotted for each of the sensors (columns) for the first three classes
(rows) in the AWR dataset. The plot for all the classes can be found in appendix B.3 and
B.4.

From figure 5.4 it can be seen that the instances in each of the plots mostly look quite similar. It,
therefore, seems like the classes are easily distinguishable from each other which also explains the high
benchmark accuracy.

5.1.3 LSST
The next open-source dataset that is used is the LSST dataset[Kag21]. The dataset contains 6 different
sensors, each a different astronomical filter. The sensors record the brightness over time for different
regions of the light spectrum. The goal is then to classify the astronomical object among 14 different
classes. The benchmark for this dataset is an accuracy of 63.62%, which makes it a harder dataset
compared to the AWR dataset. The noise, imbalanced data from the real-world sensors makes this
data set interesting to investigate as many of the same characteristics are expected with data coming
from industrial assets. The distribution of the dataset can be seen in figure 5.5:
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Figure 5.5: The class distribution of the LSST dataset.

The normalized time series data from the LSST dataset can be seen in figure 5.6 where the first
three classes are shown. It can here be seen that the time series across the different sensors are much
harder to distinguish from each other compared to the AWR dataset, which also explains the lower
benchmark. It can be seen that across all the instances that the majority of the time series are around
−0.4 with only a few deviations. And most of them seem to rarely change over time, which makes their
spectrograms relatively information lose. The spectrograms can be found in appendix B.5.

Figure 5.6: All the time series data plotted for each of the sensors(columns) for the first three
classes(rows) in the LSST dataset. The plot for all the classes can be found in appendix
B.6.

5.1.4 Hydraulic Condition Monitoring
The last open-source dataset that has been used in the following experiments, is the hydraulic condition
monitoring dataset [gGm21]. It consists of time series from 16 different sensors that samples at different
rates. As this dataset is about hydraulic monitoring, it also seems to be similar to the real-world data
that could be recorded on assets. The distribution of the classes can be seen in figure 5.7:
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Figure 5.7: The class distribution of the hydraulic condition monitoring dataset.

The time series data for the last three sensors for each of the classes can be seen in figure 5.8

Figure 5.8: All the time series data plotted for each of the classes(columns) for the last three sen-
sors(rows) in the hydraulic condition monitoring dataset. The plot for all the sensors can
be found in appendix B.7 and B.8.

5.1.5 Real-World Wind Turbine
The last dataset used in this project is the wind turbine dataset, which was obtained from the company
EDP in relation to a data analysis competition. The purpose of the competition is to detect the fault
that occurs on wind turbines when in operation. The data is from 5 wind turbines over a 2-year period
(2016-2017). The data set is divided into 3 different parts:

• The sensor data for all the wind turbines.

• Meteorological data describing the weather conditions.

• Failure records with the turbine’s failure, the component in question, and a short remark.

The dataset contains Supervisory Control And Data Acquisition (SCADA) data for 5 turbines in
Switzerland. 83 features are collected, where a data point is sampled every tenth minute. The sensors
measure a large amount of data within the 10 minutes but are then aggregated to the average, standard
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deviation, min, and max over the ten minutes period. A clear limitation with the data set is therefore
that it is impossible to say anything about the fluctuation of the sensor readings in between the 10-
minute intervals. This naturally haves a ”smoothing” effect on the data that most likely influences the
classifiers ability to differentiate the failures. A sample of the sensors can be found in figure 5.9 and the
full explanatory list of the sensor values can be found in appendix C.

Figure 5.9: Sample of the explanation of the wind data sensor.

The failures are presented with a turbine id, timestamp, a component for where the failure occurred,
and a remark. The full list of failures can be found in table 5.1. Here it can be seen that many unique
failures exist meaning only one example of a failure is available. Furthermore is the number of failures
relatively small meaning not many failures did occur during the two years of sampling data from the 5
wind turbines. This is backing up the observed problems of few failure states to many normal states
explained in section 2.5.

Turbine_ID Component Timestamp Remarks
T11 GENERATOR 2016-03-03T19:00:00+00:00 Electric circuit error in generator
T06 HYDRAULIC_GROUP 2016-04-04T18:53:00+00:00 Error in pitch regulation
T07 GENERATOR_BEARING 2016-04-30T12:40:00+00:00 High temperature in generator bearing (replace...
T09 GENERATOR_BEARING 2016-06-07T16:59:00+00:00 High temperature generator bearing
T07 TRANSFORMER 2016-07-10T03:46:00+00:00 High temperature transformer
T06 GENERATOR 2016-07-11T19:48:00+00:00 Generator replaced
T01 GEARBOX 2016-07-18T02:10:00+00:00 Gearbox pump damaged
T06 GENERATOR 2016-07-24T17:01:00+00:00 Generator temperature sensor failure
T09 GENERATOR_BEARING 2016-08-22T18:25:00+00:00 High temperature generator bearing
T07 TRANSFORMER 2016-08-23T02:21:00+00:00 High temperature transformer. Transformer refr...
T06 GENERATOR 2016-09-04T08:08:00+00:00 High temperature generator error
T06 GENERATOR 2016-10-02T17:08:00+00:00 Refrigeration system and temperature sensors i...
T09 GEARBOX 2016-10-11T08:06:00+00:00 Gearbox repaired
T09 GENERATOR_BEARING 2016-10-17T09:19:00+00:00 Generator bearings replaced
T11 HYDRAULIC_GROUP 2016-10-17T17:44:00+00:00 Hydraulic group error in the brake circuit
T06 GENERATOR 2016-10-27T16:26:00+00:00 Generator replaced
T09 GENERATOR_BEARING 2017-01-25T12:55:00+00:00 Generator bearings replaced
T11 HYDRAULIC_GROUP 2017-04-26T18:06:00+00:00 Hydraulic group error in the brake circuit
T07 HYDRAULIC_GROUP 2017-06-17T11:35:00+00:00 Oil leakage in Hub
T01 TRANSFORMER 2017-08-11T13:14:00+00:00 Transformer fan damaged
T06 HYDRAULIC_GROUP 2017-08-19T09:47:00+00:00 Oil leakage in Hub
T07 GENERATOR_BEARING 2017-08-20T06:08:00+00:00 Generator bearings damaged
T07 GENERATOR 2017-08-21T14:47:00+00:00 Generator damaged

Table 5.1: List of failures on the 5 turbines on a two year period.



5.1 Data foundation 59

A correlation and PCA analysis was performed to investigate the internal dependencies and to see
which features had the most influence on the variance of the data. In the study by Liu et al.[Liu+18]
explained in section 2.3, where a similar problem was investigated. Here values with very high correlation
were eliminated. Furthermore, using the principle components analysis it was investigated if the whole
dataset could potentially be transformed to a lower-dimensional space. From figure 5.10 it is clear that
a lot of the values are highly correlated indicating the potential to remove features that are closely
correlated with others in the dataset.

Figure 5.10: The Pearson correlation between all the SCADA sensor data from the wind turbine data
set.

The PCA analysis shows that around 97% of the variance of the data set could be explained by only
the 20 first principle components as seen in figure 5.11. Even though the PCA analysis suggested that
a lot of the dataset’s variance could be explained with a smaller set of features in the form of principal
components, the data was kept in its original form. It was hypothesised that these small differences
in the data would allow a classification model to differentiate between the different failures. It was
however decided to only look a the average features from the data. This was done as an empirical test
was carried out where a classifier was fitted on only the average features and all features. The results
from these showed that no real difference in performance came from the min, max, std features.
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Figure 5.11: The accumulated variance for the number of principle components.

5.2 GAN Experiment
The purpose of this experiment is to investigate different GAN architectures ability to generate synthetic
time series data. The generated data should be used to improve the performance of a classification model,
as the synthetic data can be used to balance the dataset and in general increase the size of the dataset.
In the following sections, the methods used to implement four different GAN architectures is presented.
The experimental method used to investigate their ability to create realistic time series data will be
presented along with general limitations.

5.2.1 Presentation of the GAN Models
In general, when training a GAN it is really hard to determine if it continues to get better. When it
comes to generating synthetic images it can be determined visually by looking at the generated images
to see if they form true looking objects. This is not exactly possible to do with time series as humans
are not designed to interpret this kind of data. Synthetic time series can however be compared with
some true examples to see if the GAN is able to capture the characteristics of the data distribution.
Therefore, it is beneficial to start out with a problem where the underlying function or distribution of
the time series data is known. To visually evaluate the proposed GAN models the constructed sinusoidal
dataset explained in section 5.1 has been used. This dataset will be used for the first model after the
AWR dataset will be used.

5.2.1.1 Conditional DCWGAN-GP

To start with, a vanilla GAN was created mainly based on the original GAN by Ian Goodfellow [Goo+14].
The true problem is known to be a multi-class problem, so the GAN has been implemented as a
conditional GAN where the labels from the data sample have been given as an input to the networks as
explained in section 3.4. Furthermore, convolutional layers are known to improve the GAN for image
generation and as time series has temporal characteristics which are similar to the spatial characteristics
in images. Therefore convolutional layers are used in both the generator and discriminator. The initial
implementation will therefore be characterised as a conditional DCGAN [RMC15]. To make sure the
conditional DCGAN is capable of learning a time series underlying data distribution the model is fitted
on the constructed sinusoidal dataset.
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Figure 5.12: A synthetic example of each condition in the fictive sine dataset produced by the condi-
tional DCGAN.

In figure 5.12 it can be seen that the conditional DCGAN understands the overall pattern in the
data and also seems to catch the condition fairly well. But the conditional DCGAN also generates
an extreme amount of noise compared to the noise in the true data. However, this is not the main
concern with this model. From figure 5.13 where 25 examples have been plotted on top of each other,
it can be seen that it looks like only one example has been plotted even though all of the instances have
been generated using different random latent vectors. This indicates mode collapse and the generator,
therefore, are able to trick the discriminator by only outputting one example per label.

Figure 5.13: The mode collapse of the conditional DCGAN. Here 25 examples are plotted for one
condition.

To handle the problem of mode collapse the model was ”upgraded” to a conditional DCWGAN-GP.
It was expected that this improvement would allow the model to generate synthetic data from the
whole distribution due to the Wasserstein distance as explained in section 3.4.2. The new model is
again fitted on the synthetic sinusoidal dataset. The generated samples of the conditional DCWGAN-
GP can be seen in figure 5.14. Here it can be seen that the synthetic data generated by the conditional
DCWGAN-GP seem to catch the underlying function and condition of the sine waves. But the data
is also extremely noisy. The results actually look worse compared to the conditional DCGAN. This is
probably due to the more complex Wasserstein loss function, that requires more training.
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Figure 5.14: A synthetic example of each condition in the fictive sine dataset produced by the condi-
tional DCWGAN-GP.

When inspecting for mode collapse in figure 5.15, the lines forming the noisy sine waves are thicker
compared to the lines in figure 5.13, which indicates that this conditional DCWGAN-GP does not suffer
as much from mode collapse. It can also be seen around timestamp 450 in the figure, that some of
the red waves can be distinguished from each other which further indicate that the model is not mode
collapsing.

Figure 5.15: 25 synthetic examples of one condition generated by the conditional DCWGAN-GP.

Now that it is known that the Wasserstein distance helps to eliminate mode collapse but the basic
conditional DCWGAN-GP does not achieve great results, the uTSGAN explained in section 3.4.3 will
be explored. First, the model based on the authors’ code will be presented. As the uTSGAN is expected
to perform better, the experiment is continued on the AWR dataset. The performance of the conditional
DCWGAN-GP can be seen in figure 5.16. Here it can be seen that it continues to produce very noisy
data. It however seems that follows the correct pattern of the true data.



5.2 GAN Experiment 63

Figure 5.16: A synthetic example of a condition from the AWR dataset produced by the conditional
DCWGAN-GP. True data on the left, generated on the right.

5.2.1.2 uTSGAN original

After conversations with Kaleb Earl Smith, the author of the uTSGAN papers, the code behind the
papers were acquired. The code was written in TensorFlow so it had to be implemented in PyTorch.
The code varied a little from the description in the paper. First of all, the use of a patch loss was
added to the unified loss to help generatorX to produce better spectrograms. The true and generated
spectrograms were divided into patches. The mean squared error between the patches was calculated to
see how far the true spectrograms were from the generated. The average mean squared error between
all the patches was added to the loss function in equation 3.28.

The main differences were how he had implemented the generatorY. Instead of using stride in the
frequency domain to downscale the spectrograms to time series he used stride in both directions to end
up with a very small spectrogram. He then used a linear layer before transforming it back to a time
series and then upsample it by alternating between a convolution layer and an upsampling until the
desired length was reached. This architecture achieved good results with this approach in the univariate
case, and it also seems to work in the multivariate case. The generated samples from this model on the
AWR dataset can be seen in figure 5.17.

Figure 5.17: A synthetic example of a condition from the AWR dataset produced by the original
uTSGAN. True data on the left, generated on the right.

From the figure it can be seen that the generated samples look promising as the general pattern of
the time series had been captured.

5.2.1.3 uTSGAN First Iteration

A simpler version of the original uTSGAN architecture was then implemented. This model was exclu-
sively based on the description in the published paper. Here the patch loss was removed so only the
stated unified loss in equation 3.28 was used to train the model. In general, the number of features
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extracted from each convolutional layer was reduced significantly to make the model simpler and easier
to train.

Most importantly the encoding in generatorY was performed only in the frequency dimension as
described in section 4.5. The time series was then decoded using a single convolution and upsampled
to the required length.

Figure 5.18: A synthetic example of a condition from the AWR dataset produced by the uTSGAN
first iteration. True data on the left, generated on the right.

Even though the complexity is significantly reduced it is possible to see from figure 5.18 that the
generated samples look very realistic.

5.2.1.4 uTSGAN Second Iteration

The final version combines the two above described versions by increasing the complexity once more by
extracting more features from each convolutional layer. Patch loss was again added to the unified loss
function. Instead of using the original encoding in the generatorY the encoding from the first iteration
uTSGAN was used. The decoding approach from the original uTSGAN, which alternated between
upsampling and convolutions, was used to extract even more features. The generated samples from this
model can be seen in figure 5.19.

Figure 5.19: A synthetic example of a condition from the AWR dataset produced by the uTSGAN
second iteration. True data on the left, generated on the right.

5.2.2 Experimental Method
Now that the four different models (conditional DCWGAN-GP, original uTSGAN, uTSGAN first iter-
ation, and uTSGAN second iteration) have been explored, the experimental method will be explained.
During the test of the four models, limitations of the GANs were realized that are necessary to be
familiar with to understand the decisions taken in the following experiments. The GANs were in gen-
eral hard to train both in terms of tuning the hyperparameters to the individual dataset, but also
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in terms of computational resources as a model easily could take 8-20 hours to train. This fact has
limited the number of datasets to perform the experiments on. The ability to differentiate the samples
in the dataset to a class has a big influence on the quality of the data produced by the GANs. As it
is not possible to perfectly differentiate a sample from one class to another, the GAN might be asked
to produce a sample from class X, but as the distribution of class X overlaps with the distribution of
class Y, the generated sample might look more like a sample from class Y. This would especially be
the case if the GAN has not perfectly learned the distribution for each class, as illustrated in figure
5.20. This will in the end confuse the classification model that needs to train on the generated data. A
very well-performing GAN is therefore necessary for the classification model to be able to benefit from
the generated data. If the GAN almost perfectly fits the data distribution its generated samples will
”fill in the gaps” of the distribution, resulting in a more robust classification model. For the GAN- and
simulated experiments the AWR dataset is therefore used as it is relatively small in size, which enables
more models to be tested, and the problem is easy to differentiate into different classes.

Figure 5.20: A visual description of a GAN that are poor at capturing the distribution of the data
thereby increasing the possibility of confusing the classification model (left). And a GAN
that fits the distribution of the data well thereby minimizing the possibility of confusing
the classification model.

Each of the four GANs was fitted on the AWR dataset. The models were trained for a different
number of epochs as they converged at different times. The uTSGAN based models were trained for
1000 epochs while the conditional DCWGAN-GP was trained for 5000 epochs. After the model was fit-
ted to the dataset, different evaluations were used, both to investigate the quality of the data generated
and to investigate if the models had mode collapsed. Evaluation metrics of generative models within
the time series domain are in general very weak. Within the image domain, the FID metric is used
as it has empirically been shown to correlate well with humans’ perception of how realistic an object
look [Heu+17]. This is however not possible to use on time series as big difference in the nature of the
data is present from domain to domain. Smith et al. [SS21] developed a FID measure where the FID
was calculated for each dataset. It was however determined that the DTW would be a more universal
measure of similarity between two time series. To investigate the quality of the generated data, 250
synthetic samples of the time series of each class were generated. For each of the generated samples, the
DTW was calculated for each of the true data samples belonging to the same class. The DTW was not
restricted as the time series in the dataset are not phase-shifted between samples. The DTW between
the generated sample and the true sample with the smallest value is reported back as the one sample
that looked the most like the generated sample. The average and standard deviation between all the
250 generated samples will be the resulting quantitative values reported. The smaller the average value
is, the more the generated data looks like the true data.

To investigate if the model had mode collapsed, a self-similarity score is calculated. 250 samples
from each class are generated. A DTW self-similarity matrix was then calculated for each class, where
the values in the lower triangular matrix were selected as seen in figure 5.21. The variance between those
distances was then calculated, to see how much variation there is in the synthetic generated samples.
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Figure 5.21: A visual representation of the similarity score between the generated samples. The self
similarity score is calculated by finding the variance of the blue area.

The uTSGAN based model depends on generatorX producing realistic-looking spectrograms to give
generatorY the best starting point for generating realistic time series data. Therefore will the quality of
the spectrograms be investigated. This was done in a similar fashion to the time series. 250 synthetic
spectrograms were generated for each sensor. The mean squared error was then calculated between
each of the generated spectrograms and all of the true. The true spectrogram with the lowest value to
the generated was selected as the most similar. The average and standard deviation between all the
generated spectrograms is reported back.

The model that produces the best synthetic time series data will be used for both the simulated
experiments and for the real-world experiments.

5.3 Simulated Experiments
A series of different classification algorithms were used to investigate which methods result in the most
accurate classification of the different open-source datasets. Every proposed model was trained using
a grid search where the most optimal selection of hyperparameters was sought out. The investigated
dataset was then reduced and the two best classification models were again fitted to the new reduced
dataset to set a new benchmark result. Finally, a GAN model was fitted on the reduced dataset to
generate synthetic data. The two best classification models were then trained on the synthetic dataset.
The purpose was to investigate whether or not it is possible to increase the performance of a model by
doing complex data augmentation using a generative model. This process will be explained in further
detail in the coming sections.

5.3.1 Phase 1: Benchmark Classification Models
Four different overall classification models are proposed for the time series classification problem. These
are the following:

• InceptionTime

• ROCKET with logistic regression with ridge regularization

• ROCKET with logistic regression optimized with SGD

• MiniROCKET with logistic regression with ridge regularization

• MiniROCKET with logistic regression optimized with SGD

• Support vector machine (SVM)

The random initialized convolutional kernel models (MiniROCKET and ROCKET) explained in
section 3.3.2 have been included because they currently are among the best performing models in the
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literature, both in relation to performance metrics but also training times. InceptionTime is included
as it also is among the best performing models in the literature [Rui+20]. The results of these models
can be seen in table B.7 in the appendix. These results will be compared with the results obtained in
the following experiments. These three models are all relatively new (no more than two years at the
publishing of this paper). To compare the results a widely used classification algorithm was selected, the
support vector machine [BGV92]. The pros and cons related to the different models will be discussed
in section 6.

To train a model that most optimally fits a dataset without overfitting is a time-consuming process.
A series of hyperparameters can be selected for each of these models. Therefore a grid search algorithm
from section 4.2.4 was used to explore multiple combinations of the hyperparameters. Besides making
the hyperparameter tuning process considerable easier in the experiment does the grid search process
also allow for dynamic hyperparameter tuning and automated continuous training in an operational
context, where datasets are updated regularly. A full list of hyperparameters can be found in table 5.2.

Model Hyperparameters
SVM Alpha: Float

InceptionTime

Epochs: Int
Learning rate: Float
Batch size: Int
Dropout: Float
Weight decay: Float

ROCKET
with logistic regression
with ridge regularization

Number of kernels: Int
Alpha: Float

ROCKET
with logistic regression
optimized with SGD

Number of kernels: Int
Alpha: Float

MiniROCKET
with logistic regression
with ridge regularization

Alpha: Float

MiniROCKET
with logistic regression
optimized with SGD

Alpha: Float

Table 5.2: List of hyperparameters for each model.

Besides the hyperparameters presented in table 5.2, each model also had a series of prepossessing
options like resampling the length of the time series to reduce the number of samples in a given interval.
Different scaling methods were implemented to normalize the data with either a mean-, min/max-,
robust-, or standard scaler.

The ROCKET models are as explained in section 3.3.2 a transformation of the dataset followed by
a linear classification model. As seen in table 5.2, two different classification methods are used based
on the authors’ recommendations [DSW20], namely a logistic regression with ridge regularization or a
logistic regression optimized with stochastic gradient descent. The choice between these two can simply
be seen as a hyperparameter that needs to be tuned.

The procedure of finding the best set of hyperparameters, and thereby setting a benchmark for each
of the datasets, follows the same structure. For each of the open-source datasets presented in section
5.1 a grid search was defined, where a large interval was chosen for each of the hyperparameters. This
was done to get a rough sense of the range each hyperparameter value should be in for that particular
dataset. The results of each of the combinations were investigated by plotting the four metrics; accuracy,
precision, recall, and an f1-score, explained in section 3.5. Here the models’ tendency to overfit is taken
into account by evaluating the models’ performance on the validation set compared with the training
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set. An example of this can be seen in figure 5.22.

Figure 5.22: An example of an element in the grid search from the LSST dataset training a logistic
regression with ridge regularization on a MiniROCKET transformation. On the left the
parameters for that model can be found and on the right the metrics on the training and
validation set can be found.

After the most promising interval for each hyperparameter was identified, a more narrow range for
each of the hyperparameters was selected and a new grid search was defined and executed in the same
manner as above. The final tuning of the model results in the closest to optimal hyperparameters. A
visual representation of the tuning process can be found in figure 5.23.

Figure 5.23: The experimental setup for the academic experiments..

Cross-validation was not used as the fundamental architecture of the models was not changed for
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each hyperparameter setting. The use of cross-validation would further exponentially increase the
number of computational resources needed in the experiment. If more computational resources had
been available this step would have been included in the method.

Both the proposed deep learning model (InceptionTime) and the random initialized convolutional
kernel models (MiniROCKET and ROCKET) seeks to extract features from the time series via trans-
formations that explain the characteristics for the individual class of the data. These transformations
are often hard for humans to understand and the models therefore becomes a black box. To be able
to evaluate the quality of the models’ ability to extract relevant features from the time series, manual
feature extraction was carried out for comparison. To do this the python library Time Series Feature
Extraction on basis of scalable Hypothesis tests (tsfresh) was used [Chr+18]. With this, it was possible
to calculate 1200 different features from the provided time series, ranging from Fourier transformations
to number of peaks. The SVM was trained on these features as the SVM is not designed for raw time
series data but instead tabular data and would therefore not understand temporal information. The
result of these experiments will be discussed in section 6.

5.3.2 Phase 2: Reduce Dataset and Benchmark
The two best models from the first phase were selected for the next phase. Here the datasets were
reduced using a stratified sampling method [Ped+21] which ensured that all classes in the original
dataset is represented in the reduced dataset and roughly keeps the class distribution. The datasets
were reduced to only 20% of the original dataset. The purpose of this reduction was to simulate a
smaller data foundation that is expected from an operational setting as explained in section 2.5. The
two best classifiers were fitted. This was done to be able to measure the effect of adding the synthetic
generated data. This benchmark on the reduced dataset is again found via a wide followed by a narrow
grid search.

5.3.3 Phase 3: Train Models on Synthetic Data
The most promising GAN from the GAN experiments is fitted on the reduced data set. Due to the
GANs limitations explained in section 5.2 only the AWR dataset has been reduced as the GAN can
not perfectly segment the time series based on the condition. It was therefore necessary to look at a
dataset where the classification models already had a very good performance. Here the AWR dataset
was the best match as the performance was very good for all the models and was a reasonable size
so the GAN models could probably train, in contrast to the hydraulic dataset which also had a good
performance but very large size. The GAN was fitted for 1000 epochs with the hyperparameters and
architecture described in section 4.5. The resulting synthetic data can be seen in section 6.1. The two
most promising classification algorithms were again fitted on a dataset containing both the 20% of the
original dataset that the GAN was fitted on along with the synthetic data. Theoretically, it is possible
to add infinite amounts of synthetic data to the original data. It was however empirically tested how
many generated samples per class that was necessary for a model to correctly classify the class of a
sample. This was done by fitting a classifier on 1, 2, 5, 10.. 200 generated samples for each class and
plotting the relative marginal improvement by adding extra samples. From this, the most reasonable
amount of generated samples was selected by assessing the balance between the added computational
cost of more samples against the added performance of the model. This point is illustrated in figure
5.24.
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Figure 5.24: Number of samples generated vs. the increase in model performance is balanced in
accordance with the increase in computational cost of training the model..

The two classifiers were then fitted with the original data along with the identified number of extra
generated samples. The results from these experiments will be discussed in section 6.2 where benchmarks
set by other researchers and experiments will be included to compare the proposed method.

5.4 Real-World Experiments
The following section will present the methodology used to conduct the experiment with the data from
real-world wind turbines. First, it will be explained how the training and validation data was sampled
along with the limitations of the dataset. Finally, the steps of the experiments will be explained.

5.4.1 Construction of the Training- and Validation Dataset
To create a training set for the classification model, resampling of the original dataset is necessary. It
is assumed that a failure starts to occur two days before the time noted in the dataset and continues
two days after. This assumption will be discussed further in section 6.3. This means that each failure
period is of length 4 days with a sampling rate of 10 minutes resulting in 576 samples. Four different
ways to organize failures were constructed and tested.

• Binary: An observation is either set to be a failure or no failure.

• Component: The failure occurring in a component is set to the same failure class. Five components
are represented in the dataset; Transformer, Generator, Hydraulic System, Generator barring and
Gearbox.

• Unique remarks: Several failures had the same remarks, meaning the same failure. These were
assigned the same failure class.

• Manually assigned: Each failure was assessed manually into a failure class by assessing the sim-
ilarities between the remarks. A sensor failure in the transformer component was for example
assigned the same failure class as another sensor failure.

The low number of failures (23 data points) made it infeasible to use the unique remarks or manually
assigned methods as this would mean that some of the classes only would have one example. The
component method was therefore used as a multi-class problem was desired and therefore excluding the
binary method.
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To get a larger number of shorter data samples the four day period was split into equally sized 12
hour periods without any overlap. This resulted in each failure timestamp was converted into 8 samples
with a length of 72 each. Some of the intervals had some missing values. An interpolation was therefore
performed to fill in the missing values.

The experiment was conducted in the context of optimized troubleshooting. In chapter 1 and 2 the
general steps of a guided troubleshooting system was defined along with the scope of this project. The
diagnostic of a failure came as a result of a detection of a failure. Therefore it was decided that the data
points where no failure have been registered would not be included. This means that the classification
algorithm only had to differentiate between failure classes. This decision will be discussed further in
section 6.3.

The resulting dataset contains 178 samples. To validate the performance of the proposed model, a
sub-sample of the data was kept as a validation set. Because the dataset is relatively small, only 10%
of the data was used for validation. It could be argued that the validation data should be sampled
from only instances occurring after the training instances, as a model in an operational setting would
only predict based on data in the future. This was however ignored for the following experiments, as
the scope of the experiment was simply to investigate the different classification algorithms ability to
differentiate between a failure in one component compared to another.

5.4.2 Phase 1: Benchmark Classification Models
The two most promising classification algorithms from section 5.3 were fitted on the sampled data. A
grid search was used to find the most optimal hyperparameters. As with the simulated experiments, a
wide grid search was conducted followed by a narrow to focus on the most optimal range of values for
the hyperparameters.

5.4.3 Phase 2: Train Models on True- and Synthetic Data
The most promising GAN was fitted on the training data. Due to the limitations of the GANs explained
in section 5.2 it was decided to fit a unique GAN for each of the five classes of the component sampling.
This was done to force the different GAN models to find the distribution of a particular class. Due to
computational limitations, the GANs were only trained for 500 epochs instead of 1000 as the simulated
experiments. The small number of samples resulted in a GAN where only 14 data points were available
for fitting the model, as seen in figure 5.25. This will influence the GANs ability to capture the
distribution of the data.

Figure 5.25: The number of samples for the five classes in the real-world experiment.

Each class was then enriched with synthetic samples. The number of samples was determined as
described in section 5.3.3. For each class, 50 new samples were generated which balances out the number
of samples for each class. The two classification algorithms were then fitted on the true data with the
added synthetic data using a wide and narrow grid search.
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The experimental method for three different experiments has now been presented. These include a
GAN experiment where the aim is to investigate different GAN architectures’ ability to create realistic
time series data, a simulated experiment where open-source datasets have been used to compare the
results of the proposed methods with public published results, and finally a dataset from the real-world
to investigate the methods’ ability to differentiate between faults in a wind turbines components. The
limitations of the different methods and datasets have been presented.



CHAPTER6
Results and Discussion

In the following section the results from the GAN, simulated- and real-world experiments will be pre-
sented and discussed. The results will be put in perspective to the theory and the related work presented
in section 3 and 2.

6.1 GAN Experiment
The results of the different GANs explored in section 5.2 will in this section be presented and discussed
to see how well the different architectures managed to generate realistic time series as well as their
limitations.

6.1.1 Conditional DCWGAN-GP
The first GAN architecture was the conditional DCWGAN-GP, which seemed to produce quite noisy
synthetic data. This can be seen in figure 6.1, where the 9 sensors for the first 3 classes are plotted
with both the true- and generated data. It can however also be seen that it catches the high-level
characteristics of each sensor for each class well.

Figure 6.1: 5 synthetic samples(orange) for the first 3 classes(rows) of the AWR dataset generated by
the conditional DCWGAN-GP compared to the true samples(blue) the GAN was trained
on. Each column represents a different sensor.

To view the results more quantitatively, 250 synthetic time series of each class has been generated
and the DTW distance against each sample in the true dataset has been calculated. These results can
be seen in table 6.1. The results in the table show that the GAN architecture consistently produces
synthetic data that has a DTW distance of around 14, as the standard deviation for each of the classes
is low.
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Class 0 1 2 3 4 5 6 7 8 9 10 11 12
Mean 14.2 13.5 16.5 16.1 13.0 14.6 14.6 14.7 16.0 13.4 16.2 14.1 15.8
Std 0.09 0.09 0.23 0.14 0.11 0.17 0.14 0.12 0.12 0.10 0.18 0.14 0.14

Class 13 14 15 16 17 18 19 20 21 22 23 24
Mean 14.5 15.2 15.6 14.6 15.9 15.6 14.6 14.5 14.1 14.4 12.7 13.3
Std 0.16 0.16 0.15 0.13 0.17 0.16 0.11 0.17 0.14 0.14 0.11 0.11

Table 6.1: The mean and standard deviation of the DTW distances between each of the generated
classes by the conditional DCWGAN-GP to the true classes in the AWR dataset.

From these results, it can be hard to determine if the GAN actually produces different results
each time or if it has mode collapsed. Therefore the DTW self-similarity of the generated synthetic
data was calculated for each class. The standard deviation of the DTW distances was calculated and
can be viewed in table 6.2. Here it can be seen the standard deviation for each class is around 0.4,
which indicates that some variance exists between the synthetic samples generated by the conditional
DCWGAN-GP. It is however important to note that the generated samples could be more different
than described by the variance in the DTW distances. This is because multiple time series, which are
very different, can have the same DTW distance as the true time series. Therefore these scores only
provide an indication of a potential mode collapse. However, a high DTW self-similarity score does
mean that mode collapse does not exist.

Class Var
0 0.54
1 0.42
2 0.50
3 0.53
4 0.44

Class Var
5 0.57
6 0.48
7 0.53
8 0.51
9 0.48

Class Var
10 0.55
11 0.43
12 0.48
13 0.48
14 0.50

Class Var
15 0.47
16 0.42
17 0.52
18 0.54
19 0.51

Class Var
20 0.46
21 0.46
22 0.46
23 0.39
24 0.46

Table 6.2: The variance of the DTW self similarity distances of the 250 synthetic samples generated
by the conditional DCWGAN-GP.

6.1.2 Original uTSGAN
The next GAN architecture that was explored was the architecture which was based on the implemen-
tation provided by the author of uTSGAN K. Smith. Five of the synthetic samples generated by this
architecture can be seen for the first three classes in figure 6.2, and it is clear to see how the noise has
been reduced and it now has caught the high-frequency characteristics better.
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Figure 6.2: 5 synthetic samples(orange) for the first 3 classes(rows) of the AWR dataset generated by
the original uTSGAN compared to the true samples(blue) the GAN was trained on. Each
column represents a different sensor.

This architecture resulted in a lower DTW distance to the samples it was trained on, which can be
seen in table 6.3. It can also be seen the standard deviation for the different classes is in general lower
than the standard deviations produced by the conditional DCWGAN-GP. By the look at the synthetic
examples in figure 6.2 and the low standard deviations from table 6.3 it seems this architecture did
mode collapse.

Class 0 1 2 3 4 5 6 7 8 9 10 11 12
Mean 10.3 8.8 11.3 8.8 7.3 9.7 9.9 10.5 12.3 8.4 11.7 8.4 12.0
Std 0.03 0.01 0.01 0.03 0.02 0.03 0.02 0.03 0.02 0.01 0.02 0.00 0.02

Class 13 14 15 16 17 18 19 20 21 22 23 24
Mean 10.1 11.3 11.1 12.4 10.6 9.9 11.0 8.9 9.1 8.6 7.6 8.0
Std 0.00 0.02 0.05 0.02 0.03 0.02 0.02 0.01 0.02 0.02 0.01 0.02

Table 6.3: The mean and standard deviation of the DTW distances between each of the generated
classes by the uTSGANvSmith to the true classes in the AWR dataset.

To verify if the model has mode collapsed, the DTW self-similarity distance has been calculated for
250 samples of each class. The standard deviation for each of the classes can be found in table 6.4,
where the really low standard deviations confirm the mode collapse. In fact, it is also much smaller
compared to the variance of the DTW self-similarity distances from the conditional DCWGAN-GP.

The reason for this mode collapse is believed to be due to the low batch size that was used to train
this architecture. This low batch size was necessary because of the high complexity of the architecture,
which meant that each additional sample would consume more memory on the GPU. This low batch
size (14 samples for each iteration) meant that on average less than one sample of each class is being
trained on as there are 25 classes in the AWR dataset. This means that when the loss is calculated with
the Wasserstein distance it cannot estimate the distribution properly, and therefore the GAN does not
benefit from this Wasserstein distance in the loss function.
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Class Var
0 0.07
1 0.07
2 0.07
3 0.08
4 0.07

Class Var
5 0.08
6 0.06
7 0.07
8 0.07
9 0.04

Class Var
10 0.06
11 0.05
12 0.07
13 0.06
14 0.06

Class Var
15 0.09
16 0.05
17 0.08
18 0.07
19 0.06

Class Var
20 0.07
21 0.06
22 0.08
23 0.07
24 0.04

Table 6.4: The variance of the DTW self similarity distances of the 250 synthetic samples generated
by the uTSGANvSmith.

To further investigate the original uTSGAN, the synthetic spectrograms it produced were compared
with the true ones. In figure 6.3 the synthetic spectrograms look similar to the true ones from figure
5.3. But they also seem to be more smoothed out. To compare them more quantitatively, 250 synthetic
spectrograms have been generated for each sensor and the mean squared error between each synthetic
sample and all the true samples were calculated. The results can be seen in table 6.5.

Figure 6.3: A synthetic example of the spectrograms generated by the uTSGANvSmith. Each plot
represents a different sensor.

Sensor 0 1 2 3 4 5 6 7 8
Mean 0.018 0.016 0.015 0.018 0.014 0.015 0.019 0.018 0.016
Std 0.0040 0.0036 0.0030 0.0047 0.0027 0.0033 0.0037 0.0045 0.0041

Table 6.5: The mean and standard deviation of the mean squared errors for each sensor spectrogram
generated by the uTSGANvSmith.

From table 6.5 it can be seen that the average mean squared error for the spectrograms of each sensor
is around 0.017, which is really low and therefore the spectrograms appear to be very true looking.

6.1.3 First Iteration uTSGAN
The architecture for the first iteration uTSGAN was a simpler version of the original uTSGAN. Due
to this simplicity, it was possible to increase the batch size to 128, and it was therefore expected that
this architecture would be able to better catch the distribution of the data. In figure 6.4 the synthetic
data generated by the GAN is shown. It is possible to see how the model again catches the low- and
high-frequency patterns of the data along with the condition. Furthermore, it can be seen that multiple
variations of each sensor type are visible which indicates that the model has not mode collapsed. This
can for instance be seen for the plot in the second column for the first row, where it has produced time
series that are completely separable.
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Figure 6.4: 5 synthetic samples(orange) for the first 3 classes(rows) of the AWR dataset generated by
the first iteration uTSGAN compared to the true samples(blue) the GAN was trained on.
Each column represents a different sensor. A zoom on the first three plots for the first
class can be found in appendix B.11, and all plots can be found in appendix B.9 and B.10.

When 250 samples of each class have been produced, it can be seen in table 6.6 that this architecture
in general produces times series that are much closer to the true dataset, as the mean values are much
lower. It can also be seen how the standard deviations are higher compared to the other architectures.

Class 0 1 2 3 4 5 6 7 8 9 10 11 12
Mean 5.0 5.2 6.6 7.0 5.8 5.5 6.7 7.7 7.8 5.9 7.7 5.6 6.1
Std 0.90 0.98 0.76 0.82 0.84 1.03 0.82 0.87 1.28 0.79 1.28 0.67 1.18

Class 13 14 15 16 17 18 19 20 21 22 23 24
Mean 6.7 7.1 7.8 6.7 6.1 6.5 8.3 6.5 5.4 5.3 4.5 5.3
Std 0.69 0.97 1.07 1.42 0.92 0.96 1.78 0.79 0.82 0.67 0.56 0.80

Table 6.6: The mean and standard deviation of the DTW distances between each of the generated
classes by the first iteration uTSGAN to the true classes in the AWR dataset.

As expected the variance of the DTW self-similarity distances is much higher compared to the other
architectures. This confirms that this architecture did not mode collapse and it further supports the
hypothesis of a small batch size leads to mode collapse.

Class Var
0 3.7
1 3.3
2 3.4
3 3.3
4 2.6

Class Var
5 4.5
6 4.4
7 3.4
8 3.9
9 3.4

Class Var
10 4.0
11 3.4
12 4.0
13 3.7
14 4.3

Class Var
15 4.7
16 4.5
17 3.3
18 4.1
19 3.7

Class Var
20 3.5
21 4.3
22 3.2
23 3.1
24 3.2

Table 6.7: The variance of the DTW self similarity distances of the 250 synthetic samples generated
by the first iteration uTSGAN.

The spectrograms generated by the first iteration uTSGAN can be seen in figure 6.5. By the look
of it, the spectrograms also seem to look realistic. They actually seem to be more realistic looking due
to the increased amount and size of the black spots in the spectrograms which are visible on the real
spectrograms, see figure 5.3. But when looking at the statistics in table 6.8, the average mean squared
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error of around 0.021 is significantly higher compared to the results of the original uTSGAN. As the
only difference affecting the spectrograms between those variations is the added patch loss, it indicates
that patch loss quantitatively improves the generation of spectrograms.

Figure 6.5: A synthetic example of the spectrograms generated by the first iteration uTSGAN. Each
plot represents a different sensor.

Sensor 0 1 2 3 4 5 6 7 8
Mean 0.022 0.018 0.018 0.023 0.020 0.018 0.021 0.024 0.025
Std 0.004 0.004 0.005 0.004 0.005 0.006 0.004 0.006 0.009

Table 6.8: The mean and standard deviation of the mean squared errors for each sensor spectrogram
generated by the first iteration uTSGAN.

This first iteration of the uTSGAN showed great potential as it in general generated synthetic data
with a low DTW distance to the true data, as seen from table 6.6. It also managed to create synthetic
data with variation which can be seen in figure 6.4 and is supported by table 6.7. Therefore it was
desired to look into the differences between the synthetic data generated by the first iteration of the
uTSGAN and true data. To do this, 250 synthetic samples were produced and the true sample they
were most similar to was subtracted for each of them. This left behind the noise generated by the
generative model which was used to investigate its spectrum. One sample of the noise on the first three
sensors can be seen at the top of figure 6.6, and at the bottom, the spectrum of 250 samples can be
seen for the same first three sensors.
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Figure 6.6: The noise generated by the first iteration uTSGAN on the first three sensors. In the top
one noise sample is shown per sensor. In the bottom 250 samples and their spectrum is
shown per sensor.

From figure 6.6 it can be seen that across the sensors the same noise is generated. If these noise
spectra are compared with the different colours of noise [Wik21], it is seen that the first iteration of the
uTSGAN does not learn just to add coloured noise. It is however still the same type of noise it learns
to add to the true data across the time series samples, which could indicate that if it was possible to
sample noise of this type, that noise could just have been added to the true data. It is however not
known if the generative model would learn to generate the same type of noise across different datasets.

6.1.4 Second Iteration uTSGAN
The second iteration of uTSGAN architecture was a bit different from the original uTSGAN architecture
but was also quite complex in the upsampling in generatorY. This meant that this architecture also
had to be trained with a low batch size of 25. The results of five synthetic time series for the first three
conditions can be seen in figure 6.7. It can again be seen that it catches the overall characteristics of
each sensor fairly well, however, it also shows some spikes around the middle of the time series for each
sensor for the second class. The spikes indicate failures within the GAN to generate realistic time series.
During the development of the models, the same spikes were observed but disappeared once the model
started to converge probably.
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Figure 6.7: 5 synthetic samples(orange) for the first 3 classes(rows) of the AWR dataset generated by
the second iteration uTSGAN compared to the true samples(blue) the GAN was trained
on. Each column represents a different sensor.

The average DTW distance to the true training set is around 10 with a very low standard deviation,
as seen in table 6.9. By the look of it, it is hard to spot any variations in the synthetic time series from
figure 6.7, which could indicate that this architecture has mode collapsed as well.

Class 0 1 2 3 4 5 6 7 8 9 10 11 12
Mean 8.5 12.2 9.1 9.2 7.7 11.4 8.3 9.6 11.9 9.1 10.8 7.5 9.1
Std 0.05 0.08 0.02 0.03 0.06 0.12 0.06 0.05 0.07 0.05 0.08 0.04 0.04

Class 13 14 15 16 17 18 19 20 21 22 23 24
Mean 10.7 11.1 13.8 11.4 11.1 9.4 10.3 9.3 10.4 8.7 7.1 8.2
Std 0.03 0.05 0.05 0.03 0.06 0.06 0.06 0.06 0.03 0.05 0.05 0.05

Table 6.9: The mean and standard deviation of the DTW distances between each of the generated
classes by the second iteration uTSGAN to the true classes in the AWR dataset.

To confirm if the architecture has mode collapsed, the variance of the DTW self-similarity distances
for each class has been calculated and put into table 6.10. Here it can be seen that the standard
deviations are significantly higher compared to the ones produces by the original uTSGAN. This also
supports the hypothesis of the low batch size introducing mode collapse, as this architecture only uses
a slightly higher batch size compared to the original uTSGAN.

Class Var
0 0.48
1 0.45
2 0.54
3 0.49
4 0.46

Class Var
5 0.66
6 0.55
7 0.59
8 0.59
9 0.51

Class Var
10 0.51
11 0.45
12 0.54
13 0.49
14 0.51

Class Var
15 0.54
16 0.55
17 0.55
18 0.48
19 0.57

Class Var
20 0.51
21 0.52
22 0.58
23 0.44
24 0.42

Table 6.10: The variance of the DTW self similarity distances of the 250 synthetic samples generated
by the second iteration uTSGAN.

The spectrograms produced by the second iteration uTSGAN can be found in figure 6.8. It can be
seen that they also look very realistic compared to the true spectrograms, and they actually seem to
understand that they are not smooth. But when looking at the statistics in table 6.11, it can be seen that
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the average mean squared error for each sensor, in general, is a bit higher compared to the spectrograms
of the original uTSGAN. This indicates that the uTSGAN architecture benefits from the last linear layer
in discriminatorX, as that is the only difference between the original uTSGAN and second iteration
uTSGAN in generatorX and discriminatorX. It is interesting to see how these spectrograms actually
are more true looking, but quantitatively are more different from the true spectrograms. This could
be due to some of the small black spots in the spectrograms are slightly shifted in time or frequency,
which results in a higher error, but still looking realistic.

Figure 6.8: A synthetic example of the spectrograms generated by the second iteration uTSGAN.
Each plot represents a different sensor.

Sensor 0 1 2 3 4 5 6 7 8
Mean 0.019 0.016 0.015 0.020 0.014 0.014 0.020 0.020 0.018
Std 0.0046 0.0042 0.0040 0.0050 0.0041 0.0045 0.0048 0.0045 0.0043

Table 6.11: The mean and standard deviation of the mean squared errors for each sensor spectrogram
generated by the second iteration uTSGAN.

6.1.5 General GAN Discussion
As seen previously in this section the different GAN architectures produce different results. In general
the utilization of the uTSGAN as the backbone architecture resulted in much more true looking time
series compared to the conditional DCWGAN-GP.

While the first iteration uTSGAN provided the best synthetic time series and the most varying
time series there is still room for improvements. In general it is generatorY that seems to be the
bottleneck in the architecture as it seems to infer some high frequency noise. This could be affected by
the frequency leaking due to the choice of window size. Therefore, the architecture could benefit from
multiple spectrograms per sensor, each with a different window size. In that way it could maybe more
easily learn the exact frequencies and exact point in time it changes.

In the AWR dataset, where the GAN architectures were validated on, the spectrograms look quite
similar for each sensor across the different classes. In datasets where the spectrograms for each sensor
looks very different for each class, it would be expected that it will not perform as well. This is due
to generatorX and discriminatorX not being conditional, and therefore the spectrograms generated by
generatorX would just be a random sample and not necessarily look like the class it should generate
the time series for. This means that the synthetic spectrogram would be less ”hinting” which class
it should generate a sample for. In the uTSGAN article, the authors argues that the generation of
realistic looking spectrograms gives generatorY much better prerequisites for producing realistic time
series [SS21]. It would therefore be expected that making generatorX and discriminatorX conditional,
would make the architecture more robust to spectrogram variation across the classes.

Even though the uTSGAN produces fairly good conditioned multivariate times series, it certainly has
its limitations. The first iteration uTSGAN produces time series data with noise of higher frequencies.
This is fine for the AWR dataset, as the separation of the different classes does not seem to be dependent
on the higher frequencies but instead the lower frequencies and thereby the higher-level characteristics.
It could be argued that this would not be suitable for generating synthetic data for high frequency
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signals, such as vibration measurements. But as much signal data from sensors on assets is aggregated
and sent every tenth minute, it is not expected that the change in the signals are of higher frequency
and thereby the different conditions should be separable by the general characteristics of the time series.

The first iteration uTSGAN also has more general limitations in form of scalability. Firstly the
amount of sensors affects the complexity of the first iteration uTSGAN by increasing the initial amount
of channels. But the real scalability limitation is regarding the number of different classes. Because
when increasing the amount of different classes, the average amount of classes that will be present in
each batch gets smaller. As described above this leads to mode collapse and will not let the model
generate synthetic data from the whole distribution. A possible way to compensate for this, is to use
batches with samples of only a few classes at a time. This should lead to a better estimation of the
distribution within each class. This however potentially results in the gradients not being estimated
accurately and thereby possibly not being able to distinct between the different classes.

Another way to potentially work around this issue is to train model for each of the classes. That
ensures the classes will be generated correctly and estimate the distribution better. However, this
potentially leads to a lot of models to train and might therefore not be a desired option, especially in
a continuous learning setup. This hypothesis is tested in the real world experiment in section 5.4.

6.2 Simulated Experiment
The following section will present the results obtained from the three different phases of the simulated
experiments. The results will be discussed and compared to benchmark results from the literature.

6.2.1 Results Phase 1: Benchmark Classification Models
After doing a grid search for all the models and datasets the following results were obtained. The
presented tables of results show the most optimal hyperparameters after the wide and narrow grid
search. In table 6.12 the results from the dataset ”Articular word recognition” is shown. The first
observation is that all model, in general, performs well. The time series from the individual classes are
also relatively easy to tell apart and do not vary much between samples, see figure 5.4 for an example.

Method Time F1 Accuracy Hyperparameters Comment

InceptionTime 1 m 0.995 0.999

Epochs: 100
Learning rate: 0.0001
Batch size: 32
Dropout: 0.5
Weight decay: 0.001

ROCKET
with logistic regression
with ridge regularization

37 s 0.998 0.999 Alpha: 11
Number of kernels: 10000

MiniROCKET
with logistic regression
with ridge regularization

1 s 0.990 0.993 Alpha: 2.5

SVM
on tsfresh feature
extraction

8 h 0.986 0.990 Alpha: 0.1
Kernel: RBF

Feature extraction
took 8 hours
SVM took 10 seconds

Table 6.12: The results from the AWR dataset using the proposed classification algorithms.

The best performing models were the deep learning model InceptionTime explained in section 3.3.1
and the ROCKET transformer with a logistic regression with ridge regularization explained in section
3.3.2. Here an almost perfect segmentation of the classes was possible to achieve as seen in figure 6.9.
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Note here how well the model generalizes to the data showing no signs of overfitting, this is partly due
to the use of dropout and weight decay.

Figure 6.9: The loss curvec (left), performance metrics (middle) and confusion matrix (right) for the
InceptionTime model trained on the AWR dataset.

The difference between the performance for the ROCKET and MiniROCKET transformer is very
small. It is however apparent that the ROCKET transformer outperforms with a small margin. This is
possibly due to double the amount of extracted features from the times series. When taking the fitting
time into consideration the MiniROCKET transformer is superior. When comparing these results to
the SVM on the feature extraction, the advantages with the ROCKET transformers become apparel as
the manual feature extraction is 28.800 times slower than the MiniROCKET transformer without any
difference in performance.

In the article by Ruiz. A. et al. [Rui+20] the recent state of the art methods within Time series
classification have been discussed. Here some of the proposed methods have also been benchmarked
against the same datasets. This enables a comparison to validate the results achieved in the presented
experiments. They present the result from 12 algorithms including the InceptionTime and ROCKET.
For the AWR dataset, the best performance was achieved with the ROCKET algorithm with an accuracy
of 99.56 closely followed by the InceptionTime algorithm with 99.10 [Rui+20]. This corresponds well
with the presented results. It is therefore fair to conclude that the proposed grid search method to tune
the hyperparameters have succeeded and can obtain similar results as benchmarks from the literature.
It is however important to focus on the fact that the results presented in [Rui+20] is a average over
30 independent runs where only one run were performed in the presented experiment due to hardware
limitations.

The LSST dataset contains a harder problem to solve than the AWR which can be seen in the results
in table 6.13. In general, all the models performed in a similar fashion. Interesting to notice is the large
difference in performance between the ROCKET and MiniROCKET transformers. The MiniROCKET
transformer has better performance on every parameter, furthermore did it not overfit as much as the
ROCKET transformer. Overfitting was in general an issue with this dataset which can be seen in the
large values for the regularizing parameters (alpha and dropout).

When comparing the results with the benchmark results from [Rui+20] the same picture emerges
as with the AWR dataset. One interesting observation is however with the IT algorithm. Here the
benchmark accuracy is only 33.97. It would therefore be necessary to rerun the experiments for several
more iterations to see if the average accuracy is reduced as the presented results significantly outperform
the benchmark scorers. The ROCKET algorithm achieves the best results in the benchmark with an
accuracy of 63.15 very similar to the results from the MiniROCKET.
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Method Time F1 Accuracy Hyperparameters Comment

InceptionTime 15 m 0.44 0.60

Epochs: 5000
Learning rate: 0.0001
Batch size: 32
Dropout: 0.7
Weight decay: 0.0001

ROCKET
with logistic regression
with ridge regularization

45 s 0.35 0.55 Alpha: 4500
Number of kernels: 10000 Overfitted

MiniROCKET
with logistic regression
with ridge regularization

16 s 0.45 0.65 Alpha: 220

SVM
on tsfresh feature
extraction

16 h 0.45 0.62 Alpha: 50
Kernel: RBF

Overfitted
Feature extraction
took 16 hours
SVM took 10 seconds

Table 6.13: The results from the LSST dataset using the proposed classification algorithms.

The large size of the Hydraulic dataset resulted in some issues. As the only dataset, it was necessary
to resample each time series to a smaller size which is indicated in table 6.14 as resampling length. This
did however not seem to affect the algorithm’s ability to correctly classify the samples. Especially did
the InceptionTime and MiniROCKET algorithms manage to almost perfectly separate the classes as
seen in figure 6.10.

To perform the feature extraction the dataset had to be resampled to a length of 500 as the dataset
was too large to calculate the features. This did reduce the performance significantly of the SVM on
this feature extraction.

Method Time F1 Accuracy Hyperparameters Comment

InceptionTime 60 m 0.999 0.999

Epochs: 250
Learning rate: 0.008
Batch size: 128
Dropout: 0.0
Weight decay: 0.005
Resampler length: 3000

ROCKET
with logistic regression
optimized with SGD

28 m 0.810 0.898
Alpha: 0.0002
Number of kernels: 10000
Resampler length: 3000

MiniROCKET
with logistic regression
with ridge regularization

7 m 0.993 0.993 Alpha: 0.6
Resampling length: 3500

SVM
on tsfresh feature
extraction

20 h 0.242 0.750 Alpha: 1.0
Kernel: RBF

Downsampled times series
from 6000 to 500 before
feature extraction.
Feature extraction
took 20 hours
SVM took 10 seconds

Table 6.14: The results from the Hydraulic dataset using the proposed classification algorithms.
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Figure 6.10: The loss curve (left), performance metrics (middle) and confusion matrix (right) for the
InceptionTime model trained on the Hydraulic dataset.

From the results presented in this section, InceptionTime and MiniROCKET have shown to provide
the best results and was therefore used for the remaining experiments.

6.2.2 Results Phase 2: Reduce Dataset and Benchmark
From the learning acquired from the GAN experiments, it was decided that only the AWR dataset would
be investigated further. This means that only this dataset will be reduced so a GAN can be fitted and
synthetic data can be generated. The two best algorithms (InceptionTime and MiniROCKET) was
fitted on a subset corresponding to 20% of the original dataset, again using a grid search to find the
most optimal parameters. The results from this can be seen in table 6.15.

Method Time F1 Accuracy Hyperparameters Comment
MiniROCKET
with logistic regression
with ridge regularization

2 s 0.956 0.970 Alpha: 0.1 Overfitted more than with
the full dataset

InceptionTime 4 m 0.970 0.971

Epochs: 200
Learning rate: 0.0001
Weight decay: 0.001
Dropout: 0.5
Batch size: 64

Overfitted more then with
the full dataset

Table 6.15: The two best algorithms trained on only 20 % of the AWR dataset and validated against
the other 80 %.

Most noticeable is the algorithms’ ability to classify the time series correctly despite only having 1
5

the original data. The models’ ability to generalize is however reduced leading to overfitting which can
be seen in figure 6.11.
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Figure 6.11: The loss curve for the reduced AWR dataset indicating overfitting.

6.2.3 Results Phase 3: Train Models on Synthetic Data
Finally, two new classification models were fitted where synthetic data have been added to the reduced
dataset to investigate if the models would benefit from synthetic data.

The number of generated samples per class was determined by fitting a classification model (Incep-
tionTime) on different numbers of only synthetic data samples and validated on the 80% original data,
see figure 6.12. From the figure, the quality of the data produced seems promising. The plot shows
a quick increase in performance with a following slower increase after reaching a score of around 0.95.
This shows that adding more instances of a label increases the score, but the computational cost vs.
performance should be balanced. 200 samples of every class were therefore chosen to be added to the
existing data. Furthermore does the plot show that the classifier do not necessary need samples from
the true dataset to perform well on unseen true data, indicating a good performing GAN model.

Figure 6.12: The performance of the InceptionTime Model only fitted on synthetic data and validated
against all of the omitted true data for different number of instances of the labels..
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In table 6.16 the results from a grid search for the MiniROCKET and InceptionTime algorithm
trained on the reduced dataset with synthetic data included is shown.

Method Time F1 Accuracy Hyperparameters Comment

InceptionTime 20 m 0.994 0.996

Epochs: 300
Learning rate: 0.0001
Batch size: 32
Dropout: 0.5
Weight decay: 0.0001

MiniROCKET
with logistic regression
with ridge regularization

16 s 0.853 0.864 Alpha: 0.1

Table 6.16: The two best algorithms fitted on the reduced dataset with synthetic data added. The
score is from the validation set which contains the data that was omitted.

The MiniROCKET algorithm did not benefit from the added data as the performance is reduced
when comparing it to the MiniROCKET when only fitting on the reduced data. This can perhaps
be explained by the MiniROCKET’s almost deterministic nature. The more ”unnatural” data points,
caused by some of the generated data, therefore may have conflicted with the majority of the correct
data points from both the generated and true. The InceptionTime however may have been able to
learn that some of the more ”unnatural” data points should be put less weight on. This is clear from
InceptionTime’s general performance. With synthetic data, the classifier manages to get a slightly
better performance score. It was expected that the addition of synthetic data would decrease the
models’ tendency to overfit as the increase of examples from the whole distribution would help the
models understand the general behaviour of the data. This was however not possible to see when
inspecting the loss from the model fitted on both the synthetic and true data. This is probably due to
the fact that the GAN model did not perfectly fit the training data as discussed in section 6.1. It is
speculated that the generated distribution did not match the true distribution resulting in the model
being ”pushed” in the wrong direction where samples were misclassified because the overlap between
the two underlying distributions was to similar.

Figure 6.13: The loss curve (left), performance metrics (middle), and confusion matrix (right) for the
InceptionTime model trained on the reduced + synthetic AWR dataset.

The small increase in performance when fitting the classifier with synthetic data is relevant to discuss.
First of all, a statistical test would need to be performed to probably validate whether or not the model’s
performance increase is random or consistently better. Here a t-test could be used. Secondly, it should
be investigated if a simple data augmentation would yield similar results as the performance increase
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is so small. Here some simple Gaussian noise could be added to the input time series. As discovered
in section 6.1.3, the noise the generative model learned to add to the true data is not a known type of
coloured noise. This could indicate that simple Gaussian noise or any coloured noise would not have
the same impact on the performance of the classification model. This should however be validated. The
GAN’s effect on the models’ performance is not significant.

It can, in general, be said that the GAN in all managed to capture the underlying distribution of
the data especially the loe frequency patterns. The results from the MiniROCKET however suggest
that some improvements still can be done. These few inconsistencies in the generated data can most
likely be explained by the quality of the GAN. It was hoped that the GAN would fill in the distribution
where values in the dataset was missing, as illustrated in figure 6.14.

Figure 6.14: The GAN’s ability to capture the underlying data distribution of a dataset helps the
classification model to generalize better based on the synthetic data..

6.3 Real-World Experiment
The following section will present the results from the experiments performed on asset data from the
real-world explained in section 5.4. The section will be divided into two. First, the results from the two
best classification algorithms identified in section 6.2 will be presented. Next, the results from applying
a GAN on the real-world dataset is presented.

6.3.1 Benchmark Results without Synthetic Data
The MiniROCKET and InceptionTime algorithms were fitted on the dataset using a wide followed by
a narrow grid search to find the most optimal set of hyperparameters. The results from this can be
found in table 6.17.
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Model Time F1 Accuracy Hyperparameters Comment

InceptionTime 23 s 0.40 0.45

Epochs: 51
Learning rate: 0.001
Batch size: 32
Dropout: 0.7
Weight decay: 0.0005

Overfitted some

MiniROCKET
with logistic regression
with ridge regularization

1 s 0.58 0.65 Alpha: 0.1 Overfitted some

Table 6.17: The results from the real-world dataset using the proposed classification algorithms.

The MiniROCKET algorithm achieves the highest score of 0.58 over the InceptionTime’s 0.40. This
was an unexpected result as the two algorithms in general have had similar performance in the simulated
experiments. The MiniROCKET did overfit more than InceptionTime which can give a skewed percep-
tion of the results. The general overfitting was combated with extensive regularization parameters on
the InceptionTime (note 0.7 dropout and 0.0005 weight decay) which did help. Regularization on the
MiniROCKET did however not have a big effect. The general overfitting is most likely coursed by the
small data sample for both training and validation and the sampling technique described in section 5.4.
The model only sees a few examples for a given failure in a small number of surrounding circumstances.
This makes it difficult for the model to figure out exactly what patterns in the data to identify as being
associated with a given failure. The sensor data from a given failure will e.g. look very different in a
storm versus a beautiful summer day. For the model to correctly identify the failure it must see more
examples in very different circumstances. Another limitation is the fact that the data comes from five
different wind turbines. The different conditions an individual wind turbine experiences are influenced
by the location of the wind turbine. The sensor data coming from these turbines would therefore vary by
some margin. In an ideal situation, it would therefore be most optimal to either have a model for each
of the turbines or group turbines that operate in similar conditions. In the case of this experiment, the
wind turbines are located at the same wind farm, so the conditions are assumed to be similar. Research
however indicates that large differences in failure rate can occur internally in a wind park as some
turbines are experiencing heavier forces if they e.g. are located on the edge of the wind turbine array
[Tav+13]. This information would be relevant to include in the strategy decision model explained in
chapter 1. A general discussion point is the fact that the proposed model, in general, can be considered
black-box models. This means that it is near impossible to identify how the model actually made its
decision. It is expected that some operator or a technician would have trouble following advice from a
model where it maybe would not be completely clear why it suggested what it did. Making a model
more transparent could therefore be an interesting subject for future studies. A start could be to report
how certain a model was on its diagnosis.

The sampling of the data is also relevant to discuss. As the exact interval for where the failure
occurred to when it was resolved is not given, some assumptions had to be made. It was assumed
that failures were represented in the data 2 days before and after a failure was detected. It is however
possible that a failure was either resolved much faster or slower, meaning that a data sample represented
as a failure was actually a ”normal” state leading to confusion in the model. For the algorithms to be
used in an operational setting more detailed logging and sampling of the data is therefore needed to get
a more accurate picture of the duration of the failure.

The obtained results indicate that it is possible for the algorithms to differentiate the failures on the
different components to a wide degree. It is however also doubtable that a perfect segmentation of the
failures on the failure of the component is achievable. This is partly due to the uncertainty in sensors
readings where noise are introduced into the measures.

For this project, it has been assumed that only one failure can occur simultaneously. This is of
course not the case in the real-world. This problem has been discussed and explored extensively in the
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literature [Sha+94; Ise05; Ott12]. The current methods proposed in the literature rely on traditional
algorithms like decision trees and graph searches that gets exponentially more complex with more
failures at the same time. Shakeri et al. argue that by testing a system often enough, the probability
of multiple faults occurring simultaneously is reduced [Sha+94]. The possibility can however not be
eliminated completely. The explored InceptionTime algorithm uses the softmax activation function in
the final layer to get the probability of the input belongs to the individual class. these probabilities
sum to one across the classes. This activation function could be replaced with a sigmoid activation
which outputs a number between zero and one for every class. This would allow the model to output
more than one prediction for each input. This could therefore be an interesting change when maybe
combined with a strategy decision model.

It was decided that classifying the components for where the failure occurs would be more beneficial
than classifying the failures themselves as some failures were only registered once, making it impossible
to train and validate. A failure in one part of the component might present itself in the sensor data
very differently than another failure in another part in the same component. It could therefore be
interesting if more data became available to investigate if the performance of the classification model
could be maintained by looking at the individual failure over the component as a whole. Even though
the model is not able to tell exactly what failure has occurred, the ability to suggest what component
to investigate first is still a big advantage compared to starting from scratch.

In section 5.4 it was explained that it was assumed that these models would only be deployed once
a failure had been detected by some classification model or operator/technician. This meant that no
data point from normal operation was included in the model. It could however be argued that a model
should be able to return without a suggestion for a fault. This would especially be in the case where an
operator or technician have observed something unusual and wants to investigate if the system could
identify a failure. Here the model should have the opportunity to return without a suggestion. It would
however be unnecessary if an anomaly detection model triggered the diagnosis model that then returns
without a suggestion. The addition of a normal class would further complicate the model.

It is in general hard to evaluate how good the models actually perform as no other results from
this dataset exist. By taking the limited amount of failures in the dataset into account, the results are
promising as they clearly indicate that there are some sensor signals that allows the classification models
to differentiate between the components from where the failure occurs. This performance is interesting
to compare with the medical studies presented in [Cli+13]. The performance for the predictive model
was around 90 %. The high accuracy is in general expected with medical models as wrong predictions
potentially could be lethal. The accuracy of the proposed models on industrial assets do not reach as
high of an accuracy. It can be argued that the necessity of a high accuracy is not that important as
with medical devices as the worst that can happen with a false positive is that a technician would have
to keep looking for the failure. In the experiment conducted in [Cli+13] not only sensor values was used
to predict the diagnosis of a patient but also clinical observation. This unification of data types is very
similar to what is expected when a strategy decision model is implemented as described in chapter 1. It
is therefore also expected that a higher accuracy can be achieved on the long term, both because more
data would become ideal but also because a model capable of also handling unstructured data could be
implemented. The logging of more data is relevant to discuss. The proposed infrastructure is designed
with continuous training in mind as it allows for retraining of the classification models. The proposed
method for automatic creating labeled datasets for automatic debugging in [ESK18] (presented in 2.4)
could be applied to the problem at hand. If the operators or technicians were asked to log the fault and
steps eventually performed to fix the problem, a dataset could be generated automatically. The sensor
data from the point in time where the fault was first detected up to the fix would be the training data
and the label would be the log created by the technician.
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6.3.2 Results with Synthetic Data
The MiniROCKET and InceptionTime algorithms were fitted on the dataset with synthetic data using
a wide followed by a narrow grid search to find the most optimal set of hyperparameters. The results
from this can be found in table 6.18.

Method Time F1 Accuracy Hyperparameters Comment

InceptionTime 3.5 m 0.39 0.47

Epochs: 320
Learning rate: 0.001
Batch size: 64
Dropout: 0.5
Weight decay: 0.005

Overfitted a lot

MiniROCKET
with logistic regression
with ridge regularization

1 s 0.31 0.36 Classifier: Ridge
Alpha: 0.8 Overfitted a lot

Table 6.18: The results from the real-world dataset with added generated data using the proposed
classification algorithms.

As with the simulated experiments, the MiniROCKET algorithm decreases in performance with
the added synthetic data. This result further indicates that the deterministic nature of MiniROCKET
causes confusion to the model when ”unnatural” samples are introduced into the dataset. A better
GAN producing more realistic samples is therefore necessary. The InceptionTime algorithm does how-
ever still maintain a good performance with the added synthetic samples. In contrast to the simulated
experiments, the F1 score does not increase with the synthetic samples. It is hard to identify if any
particular classes were harder to identify than others. From figure 6.15 it can maybe be seen that
the model have an easier time identifying the classes with more samples from the true dataset. This
indicates that the generated samples for the classes with few examples do not benefit the training of the
classifier. It can also be seen that the model have a hard time to differentiate between class 0, 1, and 2.
The differentiation between class 0 and 2 is expected to be hard as class 0 is the generator and class 2
is the generator bearing. It could therefore be expected that some of the features for one of the failures
look similar to the other. It was not possible to conclude that the training and validation performance
were correlated by looking at the F1 score on the training and validation set over the epochs which
further indicate the inconsistency in the model. The generative model was developed with the AWR
dataset as a validation set, meaning that the architecture of the generative model might not be optimal
for the real-world dataset. This has maybe influenced the quality of the generated samples and thereby
the performance of the classification model.

The results indicate that the InceptionTime algorithm is capable of adjusting in accordance with
the variation of quality in the synthetic data. It is hypothesised that this might be due to the similarity
between the GAN and InceptionTime. Both models are based on many convolutional layers that try to
extract features from the input. It could therefore be argued that some of the layers in the two models
learn similar features. Especially discriminatorY whose job is to both tell if the time series is true or
not, but also if the outputted time series meets the condition that is put on the generator. This is in
principle a classifier just like the InceptionTime. The other deep learning method presented in chapter
2 were highly specialized to a single type of problem [Pan+17; Zha+17]. The InceptionTime algorithm
has shown to be very diverse across many different types of datasets and are therefore suitable in an
operational setting.

The quality of the synthetic data did not seem to be as realistic such that the classifier could benefit
from it. This is partly due to the size of the dataset and the sampling technique. Even though the
aim with the use of GAN was to create robust models, even with little training data, a GAN must
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encounter a certain amount of samples to be able to capture the underlying distribution of the data.
When comparing the results with the GAN study on wind turbines presented in section 2.3 [Liu+19] it
is clear that more work is needed to get the benefit from the GANs. Some key differences are however
presented that are relevant to discuss. In the study the GAN was helped considerably by actually
manually creating low-frequency data that the GAN should then fine-tune. This means that actually
new samples were introduced into the dataset and not filling in the distribution as was proposed with
this project use of GANs. This method would not be desirable as it would introduce a significant
amount of manual work from domain experts which was exactly what is trying to be avoided. Secondly,
the problem they worked on was a detection problem where the classification model only had to identify
if a fault had occurred or not. This made the GANs job considerable easier as it did not have to learn
the same amount of conditions as the one presented in this experiment.

Figure 6.15: The loss curve (left), performance metrics (middle) and confusion matrix (right) for the
InceptionTime model trained on the real-world data + synthetic wind turbine dataset.

Overfitting was not reduced with the synthetic data which was also stated in the simulated exper-
iments. This is possibly due to the fact that the additional synthetic data expands the range of the
data distribution. When a sample is added that does not fit into the original data distribution because
of the GAN’s imperfections, the model has to take these samples into account. When validating the
model, the samples from outside the true distribution pushes the model in an incorrect direction. With
a better GAN, it would be expected that the addition of samples within the true distribution would
smooth out the distribution, as shown in figure 6.14. Because of this fact it is not recommended to
use GANs in an operational setting as the uncertainty that the model would do more harm than good
is too high. More work, therefore, needs to be done in the research community. It is here relevant to
mention that time series has not been the main study research subject within deep learning. Focus in
the community has mainly been on image data and natural language processing. It is however expected
that more focus will be put upon the analysis of time series data within the coming years [Ism+19].
This will hopefully mean that both new classification algorithms will be developed but also more effort
will be put into developing generative models that can be used to generate realistic time series.

The results from the conducted experiments have now been presented. It was shown that it was
possible to achieve state of the art results on open-source datasets using the most recent classification
algorithms. Especially the deep learning model Inception Time performed consistently well. These
learnings were applied to a ”real-world” dataset where promising results were achieved. The use of
GANs to generate realistic synthetic data have been investigated. The GAN experiment showed that
it was possible to generate realistic synthetic data from the AWR dataset. A series of limitations with
using a GAN was observed. It was concluded that the GANs ability to create realistic time series for a
specific class was highly limited. When creating a model for each of the classes in the real-world dataset
the size and sampling of the dataset limited the quality of the generated synthetic data. Furthermore
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did the lack of computational resources limit the number of epochs a GAN model could fit the input
data.



CHAPTER7
Conclusion and Future

Work
To what extent is it possible to create a model for fault diagnostics of industrial assets by
classifying time series?

The simulated experiments showed that the proposed state of the art classification models combined
with automatic hyperparameter tuning managed to achieve benchmark results when comparing them
with results presented in the literature. In the real-world experiments, the classification models to a
long extent were able to differentiate in what component a failure had occurred. However, the number
of failures logged did restrict the model in capturing the exact pattern associated with a failure leading
to wrong classifications. Comparing the methods to similar problems from the medical industry the
need for a model that combines structured data from sensors with unstructured observations is needed
to get better results.

Could the performance of a classification model be improved by enriching the training
dataset with synthetic data?

A variation of the uTSGAN architecture has been developed that produces realistic time series sam-
ples. The experiments on the AWR dataset showed that training the InceptionTime algorithm solely
on this synthetic generated data and validated on 80% of the real dataset resulted in benchmark perfor-
mance. These results indicate that the GAN managed to capture the general patterns of the underlying
distribution of the dataset. When training on both the 20% and synthetic samples, the model achieved
a better performance than only training on the 20%. This indicates that it is possible to improve the
performance of the classification model by doing advanced data augmentation. More experiments do
however need to be performed to validate the statistical significance of the results. The limitation of the
GAN was however clear when training a GAN on the real-world dataset. Here the additional synthetic
data did not improve the performance of the classification model. The GAN models need to almost per-
fectly fit the underlying distribution of the data to benefit the classification model. Therefore it is not
recommended to use advanced data augmentation using GANs in an operational setting as too much
uncertainty is present in the quality of the GAN. More research must be conducted for multivariate
time series generation using generative models to reduce this uncertainty.

How should a system be implemented to allow for dynamic prepossessing, training, and
continuous improvement?

A pipeline was implemented that allowed for automatic prepossessing, hyperparameter tuning, pre-
dictions and continuous training. The pipeline was implemented so both traditional machine learning
models and deep learning models could be trained using a grid search. The results obtained with the
method matches the benchmark results presented in relevant studies. It is therefore concluded that the
method could be used in an operational setting.
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7.1 Future work
While good results were achieved for the classification models and the generative model in the simu-
lated experiment, there is still work to be done to further validate the classification models and improve
the generative model. First, cross-validation should be done for all the different classification models,
followed by a t-test to statistically compare if one is better than the others. A more sophisticated hyper-
parameter optimization method would also be an improvement to make the optimal hyperparameters
more fine-tuned. This would also benefit the retraining time of the pipeline in an operational context.
Therefore, hyperparameter optimization tools like Optuna [Aki+19] should be explored.

Regarding the generative model, it would be interesting to see the difference in performance, if the
WGANX in the uTSGAN was also conditioned to make the synthetic spectrograms more directly re-
lated to the synthetic time series. As discussed, it would also be worth experimenting with the sampling
of the batches, such as sampling only a few classes in each batch to ensure the model can estimate the
distribution in each class correctly and allow for a more complex model. A more rigorously comparison
of the original uTSGAN with the second iteration of the uTSGAN should also be done to validate the
impact of the ”reinvented” way of generating a time series from a spectrogram. Again, this should also
be cross-validated. The generative model should also be validated against other datasets to investigate
if the noise it learned in the AWR dataset is the same or different from other datasets.

In the operational context, it would be interesting to see if the performance of the models would
increase as more data would become available. In general, there should be experimented with the
sampling of the dataset to cover the entire period of a failure without overlapping with a normal state.
This should then be combined with simple data augmentation to provide the classification models with
the best possible data foundation. The scope of this problem has been on the diagnostic of failures
with a narrow focus on the sensor data from the assets. There are both the detection model that needs
to be implemented along with a system for guiding the technicians to solve the failure the diagnostic
model has suggested. Before this, the operational data must be combined with the predicted outputs
from the classification models presented in this thesis. This has been described as a strategy decision
model throughout the thesis. One kind of model that has been discussed to be suitable for this task
is a reinforcement learning model. These types of models are at the end of their maturity phase and
are starting to be deployed in operational settings. It could therefore be interesting to investigate the
compatibility of these models with the guided troubleshooting problem.
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APPENDIXA
Appendix - Code Listings

A.1 Pipeline Implementation

1 class Pipeline:
2

3 def __init__(self, name:str, steps:list):
4 self.name = name
5 self.step_names, self.steps = zip(*steps)
6 self.folder_path = 'drive/MyDrive/Speciale_2021/Kode/Saved_Pipelines' # Default save

path
7 self.fitting_time = -1
8

9

10 def get_step_by_name(self, name):
11 idx = self.step_names.index(name)
12 return self.steps[idx]
13

14

15 def fit(self, X_train, y_train, validation_set=None):
16 time_start = round(time.time()) # Start time in seconds
17

18 # If validation set is specified run train and validation data through pipeline and
provide to PipelineModel

19 if validation_set:
20 X_validation, y_validation = validation_set
21

22 for step in self.steps:
23 if isinstance(step, PipelineTransformer):
24 step.fit(X_train, y_train)
25 X_train, y_train = step.transform(X_train, y_train)
26 if not isinstance(step, Synthesizer):
27 X_validation, y_validation = step.transform(X_validation,

y_validation)
28

29 elif isinstance(step, Pipeline):
30 X_train, y_train, X_validation, y_validation = step.fit(X_train, y_train,

validation_set=(X_validation, y_validation))
31

32 elif isinstance(step, (PipelineDLModel, PipelineMLModel)):
33 step.fit(X_train, y_train, validation_set=(X_validation, y_validation))
34

35 time_end = round(time.time()) # End time in seconds
36 self.fitting_time = time_end - time_start
37

38 return X_train, y_train, X_validation, y_validation
39

40 # If validation set is not specified, only run train data through pipeline
41 else:
42 for step in self.steps:
43 if isinstance(step, PipelineTransformer):
44 step.fit(X_train, y_train)
45 X_train, y_train = step.transform(X_train, y_train)
46

47 elif isinstance(step, Pipeline):
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48 X_train, y_train = step.fit(X_train, y_train)
49

50 elif isinstance(step, (PipelineDLModel, PipelineMLModel)):
51 step.fit(X_train, y_train)
52

53 time_end = round(time.time()) # End time in seconds
54 self.fitting_time = time_end - time_start
55

56 return X_train, y_train
57

58

59 def transform(self, X, y):
60 # Transform
61 for step in self.steps[:-1]:
62 X, y = step.transform(X, y)
63

64 last_step = self.steps[-1]
65 if isinstance(last_step, (Pipeline, PipelineTransformer)):
66 X, y = last_step.transform(X, y)
67

68 return X, y
69

70

71 def predict(self, X):
72 # Predict last step, transform all steps before
73 for step in self.steps[:-1]:
74 if not isinstance(step, Synthesizer):
75 X, _ = step.transform(X, None)
76

77 last_step = self.steps[-1]
78 y_ = last_step.predict(X)
79

80 return y_
81

82

83 def set_parameter(self, key, value):
84 name, key = key.split('__', 1)
85 step = self.get_step_by_name(name)
86 step.set_parameter(key, value)
87

88

89 def save(self, save_path:str=''):
90

91 save_path = f'{self.folder_path}/{self.name}' if not save_path else f'{save_path}/{
self.name}'

92

93 # Create folder for pipeline if not exist
94 if not os.path.exists(save_path):
95 os.makedirs(save_path)
96

97 # Save all pipeline steps to folder
98 for step in self.steps:
99 step.save(save_path)

100

101 # Save pipeline info
102 values = {key : value for key, value in self.__dict__.items() if not '__' in key and

not callable(key)}
103 with open(f'{save_path}.pickle', 'wb') as handle:
104 pickle.dump(values, handle, protocol=pickle.HIGHEST_PROTOCOL)
105

106

107 def load(self, load_path:str=''):
108

109 load_path = f'{self.folder_path}/{self.name}' if not load_path else f'{load_path}/{
self.name}'

110
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111 # Load all steps in pipeline from folder
112 for step in self.steps:
113 step.load(load_path)
114

115 # Load pipeline info
116 with open(f'{load_path}.pickle', 'rb') as handle:
117 values = pickle.load(handle)
118 for key, value in values.items():
119 setattr(self, key, value)

Listing A.1: The full implementation of the Pipeline class.

A.2 PipelineStep Implementation

1 class PipelineStep:
2

3 def __init__(self, name:str):
4 self.name = name
5

6

7 def set_parameter(self, key, value):
8 setattr(self, key, value)
9

10

11 def save(self, folder_path:str):
12 values = {key : value for key, value in self.__dict__.items() if not '__' in key and

not callable(key)}
13 with open(f'{folder_path}/{self.name}.pickle', 'wb') as handle:
14 pickle.dump(values, handle, protocol=pickle.HIGHEST_PROTOCOL)
15

16

17 def load(self, folder_path:str):
18 with open(f'{folder_path}/{self.name}.pickle', 'rb') as handle:
19 values = pickle.load(handle)
20 for key, value in values.items():
21 setattr(self, key, value)

Listing A.2: The full implementation of the PipelineStep class.

A.3 PipelineMLModel Implementation

1 class PipelineMLModel(PipelineStep):
2

3 def __init__(self, name:str, model):
4 super().__init__(name)
5 self.__model = model
6 self.history = {
7 'accuracy_train' : [0],
8 'precision_train' : [0],
9 'recall_train' : [0],

10 'f1_train' : [0],
11 'accuracy_validation' : [0],
12 'precision_validation' : [0],
13 'recall_validation' : [0],
14 'f1_validation' : [0]
15 }
16 self.best_folder_path = ''
17 self.best_score = 0
18 self.best_model = None
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19

20

21 def init_objects(self):
22 # Init model and optimizer if keyword arguments are avaialble
23 if hasattr(self, 'model_kw'):
24 try:
25 self.__model = self.__model(**self.model_kw, probability=True)
26 except:
27 self.__model = self.__model(**self.model_kw)
28

29

30 def fit(self, X_train, y_train, validation_set=None):
31 # Init objects
32 self.init_objects()
33

34 # Fit
35 self.__model.fit(X_train, y_train)
36

37 # Calculate metrics for training set
38 y_hat_train = self.__model.predict(X_train)
39 accuracy_train, precision_train, recall_train, f1_train = self.calculate_metrics(

y_hat_train, y_train)
40

41 # Set history value
42 self.history['accuracy_train'] = [accuracy_train]
43 self.history['precision_train'] = [precision_train]
44 self.history['recall_train'] = [recall_train]
45 self.history['f1_train'] = [f1_train]
46

47

48 if validation_set:
49 X_validation, y_validation = validation_set
50

51 # Predict with validation set and set history with f1 score
52 y_hat_validation = self.__model.predict(X_validation)
53 accuracy_validation , precision_validation , recall_validation, f1_validation =

self.calculate_metrics(y_hat_validation, y_validation)
54

55 # Set history value
56 self.history['accuracy_validation'] = [accuracy_validation]
57 self.history['precision_validation'] = [precision_validation]
58 self.history['recall_validation'] = [recall_validation]
59 self.history['f1_validation'] = [f1_validation]
60

61 if self.best_folder_path:
62 self.best_score = f1_validation
63 self.save(self.best_folder_path)
64

65

66 def predict(self, X):
67 try:
68 y_hat = self.__model.predict_proba(X)
69 except:
70 y_hat = self.__model.predict(X)
71

72 return y_hat
73

74

75 def calculate_metrics(self, y_pred, y_true):
76 report = classification_report(y_true, y_pred, output_dict=True, zero_division=0)
77 report = report.get('macro avg', report)
78 accuracy = accuracy_score(y_true, y_pred)
79

80 return accuracy, report['precision'], report['recall'], report['f1-score']
81

82
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83 def save(self, folder_path:str):
84

85 # Save all variables
86 super().save(folder_path)
87

88 # Make directory for best model
89 if not os.path.exists(self.best_folder_path):
90 os.makedirs(self.best_folder_path)
91

92 # Save model
93 f = open(f'{folder_path}/{self.name}.pt', 'wb')
94 pickle.dump(self.__model, f)
95

96

97 def load(self, folder_path:str):
98 # Load all variables
99 super().load(folder_path)

100

101 self.init_objects()
102

103 # Load model
104 f = open(f'{folder_path}/{self.name}.pt', 'rb')
105 self.__model = pickle.load(f)

Listing A.3: The full implementation of the PipelineMLModel class.

A.4 PipelineDLModel Implementation

1 class PipelineDLModel(PipelineStep):
2

3 def __init__(self, name:str, model=None, criterion=None, optimizer=None, epochs=100,
batch_size=16, shuffle=True, patience=50):

4 super().__init__(name)
5 self.__device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
6 self.__model = model
7 self.__criterion = criterion
8 self.__optimizer = optimizer
9 self.__epochs = epochs

10 self.current_epoch = 0
11 self.batch_size = batch_size
12 self.shuffle = shuffle
13 self.patience = patience
14 self.history = {
15 'loss_train' : [],
16 'accuracy_train' : [],
17 'precision_train' : [],
18 'recall_train' : [],
19 'f1_train' : [],
20 'loss_validation' : [],
21 'accuracy_validation' : [],
22 'precision_validation' : [],
23 'recall_validation' : [],
24 'f1_validation' : []
25 }
26 self.best_folder_path = ''
27 self.best_score = 0
28 self.best_model = None
29 self.best_epoch = -1
30

31

32 def init_objects(self):
33 # Init model and optimizer if keyword arguments are avaialble
34 if hasattr(self, 'model_kw'):



A.4 PipelineDLModel Implementation 105

35 self.__model = self.__model(**self.model_kw)
36 self.__model.to(self.__device)
37 if hasattr(self, 'optimizer_kw'):
38 self.__optimizer = self.__optimizer(self.__model.parameters(), **self.

optimizer_kw)
39

40

41 def fit(self, X_train, y_train, validation_set=None):
42

43 # Create the dataset and dataloader
44 dataset = PytorchTimeSeriesDataset(X_train, y_train)
45 dataloader = DataLoader(dataset, batch_size=self.batch_size, shuffle=self.shuffle)
46

47 # If validation set is specified, set X_validation and y_validation.
48 if validation_set:
49 X_validation, y_validation = validation_set
50 X_validation = torch.tensor(X_validation.astype(np.float32)).to(self.__device)
51 y_validation = torch.tensor(y_validation.astype(np.float32)).to(self.__device)
52

53 # Init objects
54 self.init_objects()
55

56 # Set model to training mode
57 self.__model.train()
58

59 # Run training loop
60 for epoch in range(self.current_epoch, self.__epochs):
61

62 running_loss = 0.0
63 running_accuracy = 0.0
64 running_precision = 0.0
65 running_recall = 0.0
66 running_f1 = 0.0
67

68 for i, batch in enumerate(dataloader):
69 inputs, labels = batch
70 inputs, labels = inputs.to(self.__device), labels.to(self.__device)
71 # Zero the parameter gradients
72 self.__optimizer.zero_grad()
73

74 # Forward
75 outputs = self.__model(inputs)
76

77 # Calculate loss
78 loss = self.__criterion(outputs, labels.argmax(dim=1).long())
79

80 # Backward + optimize
81 loss.backward()
82 self.__optimizer.step()
83

84 # Calculate metrics
85 accuracy, precision, recall, f1 = self.calculate_metrics(outputs, labels)
86 running_loss += loss.item()
87 running_accuracy += accuracy
88 running_precision += precision
89 running_recall += recall
90 running_f1 += f1
91

92 # Average the metrics over all batches
93 loss_train = running_loss / (i+1)
94 accuracy_train = running_accuracy / (i+1)
95 precision_train = running_precision / (i+1)
96 recall_train = running_recall / (i+1)
97 f1_train = running_f1 / (i+1)
98

99 # Update history
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100 self.history['loss_train'].append(loss_train)
101 self.history['accuracy_train'].append(accuracy_train)
102 self.history['precision_train'].append(precision_train)
103 self.history['recall_train'].append(recall_train)
104 self.history['f1_train'].append(f1_train)
105

106 # Also calculate for validation set
107 if validation_set:
108 with torch.no_grad():
109 # self.__model.eval()
110 y_validation_pred = self.__model(X_validation)
111 loss_validation = self.__criterion(y_validation_pred, y_validation.argmax

(dim=1).long())
112 accuracy_validation , precision_validation , recall_validation,

f1_validation = self.calculate_metrics(y_validation_pred,
y_validation)

113 self.history['loss_validation'].append(loss_validation.item())
114 self.history['accuracy_validation'].append(accuracy_validation)
115 self.history['precision_validation'].append(precision_validation)
116 self.history['recall_validation'].append(recall_validation)
117 self.history['f1_validation'].append(f1_validation)
118

119 # If validation score is better than best, save that model
120 if f1_validation > self.best_score:
121 self.best_epoch = epoch
122 self.best_score = f1_validation
123 self.save(self.best_folder_path)
124 self.confusion_matrix = confusion_matrix(y_validation.cpu().squeeze()

.argmax(dim=1), y_validation_pred.cpu().squeeze().argmax(dim=1))
125

126 # Early stopping criteria met. Break training loop
127 elif epoch > self.best_epoch + self.patience:
128 break
129

130

131 # Plot for every 500th epoch
132 if self.current_epoch % 25 == 0:
133 if validation_set:
134 self.plot(validation_set=(y_validation_pred, y_validation))
135 else:
136 self.plot()
137

138 self.current_epoch = epoch + 1
139

140 # Plot after full training
141 if validation_set:
142 self.plot(validation_set=(y_validation_pred, y_validation))
143 else:
144 self.plot()
145

146

147 def calculate_metrics(self, y_pred, y_true):
148

149 y_pred = y_pred.cpu().squeeze().argmax(dim=1)
150 y_true = y_true.cpu().squeeze().argmax(dim=1)
151

152 report = classification_report(y_true, y_pred, output_dict=True, labels=torch.unique(
torch.cat((y_true, y_pred), dim=0)), zero_division=0)

153 report = report.get('macro avg', report)
154 accuracy = accuracy_score(y_true, y_pred)
155

156 return accuracy, report['precision'], report['recall'], report['f1-score']
157

158

159 def plot(self, validation_set=None):
160
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161 clear_output(wait=True)
162 sns.set_theme()
163 plt.figure(figsize=(20,10))
164

165 # Plot loss
166 plt.subplot(1,2,1)
167 plt.plot(range(len(self.history['loss_train'])), self.history['loss_train'], label='

Train loss')
168 if 'loss_validation' in self.history:
169 plt.plot(range(len(self.history['loss_validation'])), self.history['

loss_validation'], label='Validation loss')
170 plt.legend()
171 plt.title('Loss', fontsize=24)
172 plt.xlabel('Epoch', fontsize=18)
173 plt.ylabel('Loss', fontsize=18)
174

175 # Plot f1 score
176 plt.subplot(1,2,2)
177 plt.plot(range(len(self.history['f1_train'])), self.history['f1_train'], label='Train

f1 score')
178 if 'f1_validation' in self.history:
179 plt.plot(range(len(self.history['f1_validation'])), self.history['f1_validation'

], label = 'Validation f1 score')
180 plt.legend()
181 plt.title('F1 Score', fontsize=24)
182 plt.xlabel('Epoch', fontsize=18)
183 plt.ylabel('F1 score', fontsize=18)
184 plt.tight_layout()
185

186

187 # Plot validation confusion matrix
188 if validation_set:
189

190 y_validation_pred = validation_set[0].cpu().squeeze().argmax(dim=1)
191 y_validation = validation_set[1].cpu().squeeze().argmax(dim=1)
192

193 fig = plt.figure(figsize=(14,14))
194 ax = fig.add_subplot(111)
195

196 cm = confusion_matrix(y_validation, y_validation_pred)
197

198 sns.heatmap(cm, annot=True, cmap='Blues', cbar=False, fmt='d')
199 ax.set_title('Confusion Matrix', fontsize=24)
200 ax.set_xlabel('Predicted labels', fontsize=18)
201 ax.set_ylabel('True Labels', fontsize=18)
202

203

204 plt.tight_layout()
205 plt.show()
206

207

208 def predict(self, X):
209 # Set the model to evaluation mode
210 self.__model.eval()
211 X = X.to(self.__device)
212

213 # Predict for the input batch
214 y_pred = self.__model(torch.tensor(X.astype(np.float32)))
215

216 return y_pred
217

218

219 def save(self, folder_path:str):
220

221 # Save all variables
222 super().save(folder_path)
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223

224 # Make directory for best model
225 if not os.path.exists(self.best_folder_path):
226 os.makedirs(self.best_folder_path)
227

228 # Save model
229 f = open(f'{folder_path}/{self.name}.pt', 'wb')
230 torch.save(self.__model.state_dict(), f)
231

232

233 def load(self, folder_path:str):
234 # Load all variables
235 super().load(folder_path)
236

237 self.init_objects()
238

239 # Load model
240 self.__model.load_state_dict(torch.load(f'{folder_path}/{self.name}.pt'))

Listing A.4: The full implementation of the PipelineDLModel class.

A.5 uTSGAN Implementation

1 class GeneratorX(nn.Module):
2

3 def __init__(self, latent_size, channels):
4 super(GeneratorX, self).__init__()
5

6 # Input shape (B, L, 1, 1)
7 self.net = nn.Sequential(
8 self._block(latent_size, channels*128, kernel_size=4, stride=1, padding=0),
9 self._block(channels*128, channels*64, kernel_size=4, stride=2, padding=1),

10 self._block(channels*64, channels*32, kernel_size=4, stride=2, padding=1),
11 self._block(channels*32, channels*16, kernel_size=4, stride=2, padding=1),
12 self._block(channels*16, channels*8, kernel_size=4, stride=2, padding=1),
13 nn.ConvTranspose2d(channels*8, channels, kernel_size=4, stride=2, padding=1),
14 nn.Tanh(),
15 )
16

17 def _block(self, in_channels, out_channels, kernel_size, stride, padding):
18 return nn.Sequential(
19 nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding, bias=

False),
20 nn.BatchNorm2d(out_channels),
21 nn.LeakyReLU(0.2),
22 )
23

24 def forward(self, X):
25 X = self.net(X)
26 return X

Listing A.5: The full implementation of generatorX.

1 class DiscriminatorX(nn.Module):
2

3 def __init__(self, channels):
4 super(DiscriminatorX, self).__init__()
5

6 # Input shape (B, C, 128, 128)
7 self.net = nn.Sequential(
8 self._block(channels, channels*2, kernel_size=4, stride=2, padding=1),
9 self._block(channels*2,channels*4, kernel_size=4, stride=2, padding=1),
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10 self._block(channels*4,channels*8, kernel_size=4, stride=2, padding=1),
11 self._block(channels*8,channels*16, kernel_size=4, stride=2, padding=1),
12 self._block(channels*16,channels*32, kernel_size=4, stride=2, padding=1),
13 nn.Conv2d(channels*32, 1, kernel_size=4, stride=2, padding=0),
14 )
15

16 def _block(self, in_channels, out_channels, kernel_size, stride, padding):
17 return nn.Sequential(
18 nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False),
19 nn.BatchNorm2d(out_channels),
20 nn.LeakyReLU(0.2),
21 )
22

23 def forward(self, X):
24 rand_noise = torch.randn(X.shape).to(X.device)
25 X = X + rand_noise
26 X = self.net(X)
27 return X

Listing A.6: The full implementation of discriminatorX.

1 class GeneratorY(nn.Module):
2

3 def __init__(self, embed_size, channels, num_labels):
4 super(GeneratorY, self).__init__()
5

6 self.embed_size = embed_size
7 self.embedding = nn.Embedding(num_labels, embed_size*128*128)
8

9 # Input shape: (B, channels+embed, 128, 128)
10 self.net = nn.Sequential(
11 self._block(channels+embed_size, channels*2, kernel_size=3, stride=(2,1), padding

=1),
12 self._block(channels*2, channels*4, kernel_size=3, stride=(2,1), padding=1),
13 self._block(channels*4, channels*8, kernel_size=3, stride=(2,1), padding=1),
14 self._block(channels*8, channels*16, kernel_size=3, stride=(2,1), padding=1),
15 self._block(channels*16, channels*32, kernel_size=3, stride=(2,1), padding=1),
16 self._block(channels*32, channels*16, kernel_size=3, stride=(2,1), padding=(0,1)),
17 nn.Flatten(start_dim=2),
18 )
19

20 self.upnet = nn.Sequential(
21 nn.Conv1d(channels*16, channels, kernel_size=3, stride=1, padding=1, bias=False),
22 nn.Tanh(),
23 nn.Upsample(size=512, mode='linear', align_corners=False)
24 )
25

26 def _block(self, in_channels, out_channels, kernel_size, stride, padding):
27 return nn.Sequential(
28 nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False),
29 nn.BatchNorm2d(out_channels),
30 nn.LeakyReLU(0.2),
31 )
32

33 def forward(self, X, y):
34 embedding = self.embedding(y.long()).view(y.shape[0], self.embed_size, 128, 128)
35 X = torch.cat([X, embedding], dim=1)
36 X = self.net(X)
37 X = self.upnet(X)
38 return X

Listing A.7: The full implementation of generatorY.

1 class DiscriminatorY(nn.Module):
2
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3 def __init__(self, embed_size, channels, num_labels):
4 super(DiscriminatorY, self).__init__()
5

6 self.embed_size = embed_size
7 self.embedding = nn.Embedding(num_labels, 512*embed_size)
8

9 # Input (B, C+E, 512)
10 self.net = nn.Sequential(
11 nn.Conv1d(channels+embed_size, channels*2, kernel_size=4, stride=2, padding=1),
12 nn.LeakyReLU(0.2),
13 self._block(channels*2, channels*4, kernel_size=3, stride=2, padding=1),
14 self._block(channels*4, channels*8, kernel_size=3, stride=2, padding=1),
15 self._block(channels*8, channels*16, kernel_size=3, stride=2, padding=1),
16 self._block(channels*16, channels*32, kernel_size=3, stride=2, padding=1),
17 self._block(channels*32, channels*64, kernel_size=3, stride=2, padding=1),
18 self._block(channels*64, channels*128, kernel_size=3, stride=2, padding=1),
19 nn.Conv1d(channels*128, 1, kernel_size=4, stride=2, padding=0),
20 )
21

22 def _block(self, in_channels, out_channels, kernel_size, stride, padding):
23 return nn.Sequential(
24 nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, bias=False)
25 nn.BatchNorm2d(out_channels),
26 nn.LeakyReLU(0.2),
27 )
28

29 def forward(self, X, y):
30 embed = self.embedding(y.long())
31 embed = torch.reshape(embed, (X.shape[0], self.embed_size, X.shape[2]))
32 X = torch.cat([X, embed], dim=1)
33 X = self.net(X)
34 return X

Listing A.8: The full implementation of discriminatorY.

1 def fit(self, X, y):
2 # Create the dataset and dataloader
3 dataset = PytorchTimeSeriesDatasetWithSpectogram(X, y)
4 dataloader = DataLoader(dataset, batch_size=self.batch_size, shuffle=self.shuffle)
5 z_to_plot = torch.randn(y.shape[1], self.__generatorX.latent_size, 1, 1).to(self.__device

)
6 true_idx_to_get = y.argmax(0)
7 true_to_plot = dataset.__getitem__(true_idx_to_get)
8

9 # Set model to training mode
10 self.__generatorX.train()
11 self.__generatorY.train()
12 self.__discriminatorX.train()
13 self.__discriminatorY.train()
14

15 # Run training loop
16 for epoch in range(self.current_epoch, self.__epochs):
17

18 loss_generator_epoch = 0
19 loss_generatorX_epoch = 0
20 loss_generatorY_epoch = 0
21 loss_discriminator_epoch = 0
22 loss_discriminatorX_epoch = 0
23 loss_discriminatorY_epoch = 0
24

25 for i, batch in enumerate(dataloader):
26 inputs, labels, spectrograms = batch
27 inputs, labels, spectrograms = inputs.to(self.__device), labels.to(self.__device)

, spectrograms.to(self.__device)
28

29 loss_discriminator_iteration = 0
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30 loss_discriminatorX_iteration = 0
31 loss_discriminatorY_iteration = 0
32

33 for _ in range(self.discriminator_iterations):
34

35 with torch.autograd.set_detect_anomaly(True):
36 # Create latent vector
37 z = torch.randn(labels.shape[0], self.__generatorX.latent_size, 1, 1).to(

self.__device)
38

39 # Train with discriminatorX with true spectrograms
40 output_discriminatorX_true = self.__discriminatorX(spectrograms).reshape

(-1)
41 # Train discriminatorX with fake spectrograms
42 g_X_z = self.__generatorX(z)
43 output_discriminatorX_fake = self.__discriminatorX(g_X_z).reshape(-1)
44 # Train discriminatorY with true time series
45 output_discriminatorY_true = self.__discriminatorY(inputs, labels).

reshape(-1)
46 # Train discriminatorY with fake Timeseries
47 g_Y_z = self.__generatorY(g_X_z, labels)
48 output_discriminatorY_fake = self.__discriminatorY(g_Y_z, labels).reshape

(-1)
49

50 # Calculate loss for discriminatorX
51 GP_X = self.gradient_penelty_spectogram(self.__discriminatorX,

spectrograms, g_X_z)
52 loss_discriminatorX = -(torch.mean(output_discriminatorX_true) - torch.

mean(output_discriminatorX_fake)) + self.lambda_penalty_x * GP_X
53 # Calculate loss for discriminatorY
54 GP_Y = self.gradient_penelty_timeseries(self.__discriminatorY, inputs,

g_Y_z, labels)
55 loss_discriminatorY = -(torch.mean(output_discriminatorY_true) - torch.

mean(output_discriminatorY_fake)) + self.lambda_penalty_y * GP_Y
56

57 # Calculate the unified loss
58 unified_loss_discriminator = (loss_discriminatorX + loss_discriminatorY)

/2
59 loss_discriminator_iteration += unified_loss_discriminator.item()
60 loss_discriminatorX_iteration += loss_discriminatorX.item()
61 loss_discriminatorY_iteration += loss_discriminatorY.item()
62

63 # Zero the gradients for the discriminators
64 self.__discriminatorX.zero_grad()
65 self.__discriminatorY.zero_grad()
66

67 # Backwards
68 unified_loss_discriminator.backward(retain_graph=True)
69

70 # Optimize Discriminator
71 self.__optimizer_discriminatorX.step()
72 self.__optimizer_discriminatorY.step()
73

74 # Average loss in discriminator iterations
75 loss_discriminator_iteration /= self.discriminator_iterations
76 loss_discriminatorX_iteration /= self.discriminator_iterations
77 loss_discriminatorY_iteration /= self.discriminator_iterations
78

79 # Calculate loss generatorX
80 genX_ = self.__discriminatorX(g_X_z)
81 loss_generatorX = -torch.mean(genX_)
82

83 # Calculate loss generatorY
84 genY_ = self.__discriminatorY(g_Y_z, labels)
85 loss_generatorY = -torch.mean(genY_)
86
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87 # Zero the gradients for the generator
88 self.__generatorX.zero_grad()
89 self.__generatorY.zero_grad()
90

91 # Backwards on both generators
92 loss_generatorX.backward(retain_graph=True)
93 loss_generatorY.backward()
94

95 # Optimize generator
96 self.__optimizer_generatorX.step()
97 self.__optimizer_generatorY.step()
98

99 loss_discriminator_epoch += loss_discriminator_iteration
100 loss_discriminatorX_epoch += loss_discriminatorX_iteration
101 loss_discriminatorY_epoch += loss_discriminatorY_iteration
102 loss_generator_epoch += unified_loss_generator.item()
103 loss_generatorX_epoch += loss_generatorX.item()
104 loss_generatorY_epoch += loss_generatorY.item()
105

106 # Logging to history for epoch average
107 self.history['loss_discriminator'].append(loss_discriminator_epoch / (i+1))
108 self.history['loss_discriminatorX'].append(loss_discriminatorX_epoch / (i+1))
109 self.history['loss_discriminatorY'].append(loss_discriminatorY_epoch / (i+1))
110 self.history['loss_generator'].append(loss_generator_epoch / (i+1))
111 self.history['loss_generatorX'].append(loss_generatorX_epoch / (i+1))
112 self.history['loss_generatorY'].append(loss_generatorY_epoch / (i+1))
113

114 self.current_epoch += 1

Listing A.9: The full implementation of the fit method of the uTSGAN.
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B.1 AWR - Spectrograms for Sensors per Class

Figure B.1: The spectrograms for each of the sensors(columns) for the first 13 classes(rows) in the
AWR dataset.
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Figure B.2: The spectrograms for each of the sensors(columns) for the last 12 classes(rows) in the
AWR dataset.
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B.2 AWR - Time Series for Sensors per Class

Figure B.3: All the time series data plotted for each of the sensors(columns) for the first 13
classes(rows) in the AWR dataset.
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Figure B.4: All the time series data plotted for each of the sensors(columns) for the last 12
classes(rows) in the AWR dataset.
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B.3 LSST - Spectrograms for Sensors per Class

Figure B.5: The spectrograms for each of the sensors(columns) for the classes(rows) in the LSST
dataset.
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B.4 LSST - Time Series for Sensors per Class

Figure B.6: All the time series data plotted for each of the sensors(columns) for the classes(rows) in
the LSST dataset.
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B.5 Hydraulic Condition Monitoring - Time Series for Sensors per
Class

Figure B.7: All the time series data plotted for each of the classes(columns) for the first 9 sensors(rows)
in the hydraulic condition monitoring dataset.
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Figure B.8: All the time series data plotted for each of the classes(columns) for the last 8 sensors(rows)
in the hydraulic condition monitoring dataset.
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B.6 First iteration uTSGAN against true dataset

Figure B.9: 5 synthetic samples(orange) for the first 13 classes(rows) of the AWR dataset generated
by the first iteration uTSGAN compared to the true samples(blue) the GAN was trained
on. Each column represents a different sensor..
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Figure B.10: 5 synthetic samples(orange) for the last 12 classes(rows) of the AWR dataset generated
by the first iteration uTSGAN compared to the true samples(blue) the GAN was trained
on. Each column represents a different sensor..
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Figure B.11: 5 synthetic samples(orange) for the first class for the first 3 sensors of the AWR dataset
generated by the first iteration uTSGAN compared to the true samples(blue) the GAN
was trained on. Each column represents a different sensor..

B.7 Benchmark Results from Literature
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1 

Wind Farm 1 – Signals 
Wind turbine SCADA signals for the 5 selected wind turbines 

 

 

Field Name Description 

Turbine Identifier Wind turbine ID 

TimeStamp Date and time of the measure 

Descriptors + Value Description and value of the sensor data 

 

 

Please find below the SCADA signals available for each wind turbine and respective units. 

The data is given for a 10-minute average period. 

Descriptor Type Description Component 

Gen_RPM_Max [rpm] FLOAT 
Maximum generator rpm in latest 

average period 
Generator 

Gen_RPM_Min [rpm] FLOAT 
Minimum generator rpm in latest 

average period 
Generator 

Gen_RPM_Avg [rpm] FLOAT Average generator rpm  Generator 

Gen_RPM_Std [rpm] FLOAT 
Std. generator rpm in latest average 

period 
Generator 

Gen_Bear_Temp_Avg [ºC] INT 
Average temperature in generator 

bearing 1 (Non-Drive End) 
Generator 

Gen_Phase1_Temp_Avg [ºC] INT 
Average temperature inside generator 

in stator windings phase 1  
Generator 

Gen_Phase2_Temp_Avg [ºC] INT 
Average temperature inside generator 

in stator windings phase 2 
Generator 

Gen_Phase3_Temp_Avg [ºC] INT 
Average temperature inside generator 

in stator windings phase 3 
Generator 

Hyd_Oil_Temp_Avg [ºC] INT 
Average temperature oil in hydraulic 

group 
Hydraulic 

Gear_Oil_Temp_Avg [ºC] INT Average temperature oil in gearbox Gearbox 

Gear_Bear_Temp_Avg [ºC] INT 
Average temperature in gearbox 

bearing on high speed shaft 
Gearbox 

Nac_Temp_Avg [ºC] INT Average temperature in nacelle Nacelle 

Rtr_RPM_Max [rpm] FLOAT 
Maximum rotor rpm in latest average 

period 
Rotor 

Rtr_RPM_Min [rpm] FLOAT 
Minimum rotor rpm in latest average 

period 
Rotor 

Rtr_RPM_Avg [rpm] FLOAT Average rotor rpm  Rotor 

Amb_WindSpeed_Max [m/s] FLOAT 
Maximum windspeed within average 

timebase 
Ambient 

Amb_WindSpeed_Min [m/s] FLOAT 
Minimum windspeed within average 

timebase 
Ambient 

Amb_WindSpeed_Avg [m/s] FLOAT 
Average windspeed within average 

timebase 
Ambient 

Amb_WindSpeed_Std [m/s] FLOAT 
Std. windspeed within average 

timebase 
Ambient 

Amb_WindDir_Relative_Avg [º] FLOAT Average wind relative direction  Ambient 

Amb_WindDir_Abs_Avg [º] FLOAT Average wind absolute direction Ambient 

Amb_Temp_Avg [ºC] INT Average ambient temperature Ambient 



  

 

2 

Prod_LatestAvg_ActPwrGen0 [Wh] INT 
Active power - generator disconnected 

(yaw motor hydraulic motor etc.) 
Production 

Prod_LatestAvg_ActPwrGen1 [Wh] INT 
Active power - generator connected in 

delta 
Production 

Prod_LatestAvg_ActPwrGen2 [Wh] INT 
Active power - generator connected in 

star 
Production 

Prod_LatestAvg_TotActPwr [Wh] INT Total active power Production 

Prod_LatestAvg_ReactPwrGen0 [VArh] INT 

Reactive power - generator 

disconnected (yaw motor hydraulic 

motor etc.) 

Production 

Prod_LatestAvg_ReactPwrGen1 [VArh] INT 
Reactive power - generator connected 

in delta 
Production 

Prod_LatestAvg_ReactPwrGen2 [VArh] INT 
Reactive power - generator connected 

in star 
Production 

Prod_LatestAvg_TotReactPwr [VArh] INT Total reactive power Production 

HVTrafo_Phase1_Temp_Avg [ºC] INT 
Average temperature in HV transformer 

phase L1 
Transformer 

HVTrafo_Phase2_Temp_Avg [ºC] INT 
Average temperature in HV transformer 

phase L2 
Transformer 

HVTrafo_Phase3_Temp_Avg [ºC] INT 
Average temperature in HV transformer 

phase L3 
Transformer 

Grd_InverterPhase1_Temp_Avg [ºC] INT 
Average temperature measured by the 

IGBT-driver on the grid side inverter 
Grid 

Cont_Top_Temp_Avg [ºC] INT 
Average temperature in the top nacelle 

controller 
Controller 

Cont_Hub_Temp_Avg [ºC] INT 
Average temperature in the hub 

controller 
Controller 

Cont_VCP_Temp_Avg [ºC] INT Average temperature on the VCP-board  Controller 

Gen_SlipRing_Temp_Avg [ºC] INT 
Average temperature in the split ring 

chamber 
Generator 

Spin_Temp_Avg [ºC] INT Average temperature in the nose cone Spinner 

Blds_PitchAngle_Min [º] FLOAT 
Maximum angle in latest average 

period 
Blades 

Blds_PitchAngle_Max [º] FLOAT Minimum angle in latest average period Blades 

Blds_PitchAngle_Avg [º] FLOAT Average angle  Blades 

Blds_PitchAngle_Std [º] FLOAT Std. angle in latest average period Blades 

Cont_VCP_ChokcoilTemp_Avg [ºC] INT 
Average temperature in the choke coils 

on the VCS-section 
Controller 

Grd_RtrInvPhase1_Temp_Avg [ºC] INT 

Average temperature measured by the 

IGBT-driver on the rotor side inverter 

phase1 

Grid 

Grd_RtrInvPhase2_Temp_Avg [ºC] INT 

Average temperature measured by the 

IGBT-driver on the rotor side inverter 

phase2 

Grid 

Grd_RtrInvPhase3_Temp_Avg [ºC] INT 

Average temperature measured by the 

IGBT-driver on the rotor side inverter 

phase3 

Grid 

Cont_VCP_WtrTemp_Avg [ºC] INT 
Average temperature in the VCS 

cooling water 
Controller 

Grd_Prod_Pwr_Avg [kW] FLOAT Power average according to  Grid 

Grd_Prod_CosPhi_Avg FLOAT Average actual phase displacement Grid 

Grd_Prod_Freq_Avg [Hz] FLOAT Average frequency Grid 



  

 

3 

Grd_Prod_VoltPhse1_Avg [V] FLOAT Averaged voltage in phase 1 Grid 

Grd_Prod_VoltPhse2_Avg [V] FLOAT Averaged voltage in phase 2 Grid 

Grd_Prod_VoltPhse3_Avg [V] FLOAT Averaged voltage in phase 3 Grid 

Grd_Prod_CurPhse1_Avg [A] FLOAT Averaged current in phase 1 Grid 

Grd_Prod_CurPhse2_Avg [A] FLOAT Averaged current in phase 2 Grid 

Grd_Prod_CurPhse3_Avg [A] FLOAT Averaged current in phase 3 Grid 

Grd_Prod_Pwr_Max [kW] FLOAT 
Maximum Power in latest average 

period 
Grid 

Grd_Prod_Pwr_Min [kW] FLOAT 
Minimum Power in latest average 

period 
Grid 

Grd_Busbar_Temp_Avg [ºC] INT 
Average temperature in the busbar 

section 
Grid 

Rtr_RPM_Std [rpm] FLOAT Std. rotor rpm in latest average period Rotor 

Amb_WindSpeed_Est_Avg [m/s] FLOAT 
Average windspeed within average 

timebase 
Ambient 

Grd_Prod_Pwr_Std [kW] FLOAT Std. power in latest average period Grid 

Grd_Prod_ReactPwr_Avg [kVAr] FLOAT Average grid reactive power  Grid 

Grd_Prod_ReactPwr_Max [kVAr] FLOAT Maximum grid reactive power Grid 

Grd_Prod_ReactPwr_Min [kVAr] FLOAT Minimum grid reactive Power Grid 

Grd_Prod_ReactPwr_Std [kVAr] FLOAT Std. Deviation grid reactive power Grid 

Grd_Prod_PsblePwr_Avg [kW] FLOAT Average possible grid active power Grid 

Grd_Prod_PsblePwr_Max [kW] FLOAT Maximum possible grid active power Grid 

Grd_Prod_PsblePwr_Min [kW] FLOAT Minimum possible grid active power Grid 

Grd_Prod_PsblePwr_Std [kW] FLOAT Std. possible grid active power Grid 

Grd_Prod_PsbleInd_Avg [kVAr] 
FLOAT 

Average possible inductive reactive 

power 
Grid 

Grd_Prod_PsbleInd_Max [kVAr] 
FLOAT 

Maximum possible inductive reactive 

power 
Grid 

Grd_Prod_PsbleInd_Min [kVAr] 
FLOAT 

Minimum possible inductive reactive 

power 
Grid 

Grd_Prod_PsbleInd_Std [kVAr] FLOAT Std. possible inductive reactive power Grid 

Grd_Prod_PsbleCap_Avg [kVAr] 
FLOAT 

Average possible capacitive reactive 

power 
Grid 

Grd_Prod_PsbleCap_Max [kVAr] 
FLOAT 

Maximum possible capacitive reactive 

power 
Grid 

Grd_Prod_PsbleCap_Min [kVAr] 
FLOAT 

Minimum possible capacitive reactive 

power 
Grid 

Grd_Prod_PsbleCap_Std [kVAr] FLOAT Std. possible capacitive reactive power Grid 

Gen_Bear2_Temp_Avg [ºC] INT 
Average temperature in generator 

bearing 2 (Drive End) 
Generator 

Nac_Direction_Avg [º] FLOAT Average nacelle direction Nacelle 
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